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Abstract
The properties of non-parametric kernel estimators for the first order deriva­

tive of probability density function from special parameterized classes are in­
vestigated. In particular, in the case of known smooth classes parameter, rates 
of mean square convergency of density and its derivative estimators of smooth 
parameter estimators axe found. Adaptive estimators of densities and their first 
derivatives from the given class with the unknown smooth parameter are con­
structed. Non-asymptotic and asymptotic properties of these estimators are 
established.

Keywords: Non-parametric kernel density estimators, smooth parameter 
estimation; adaptive density derivative estimators, mean square convergence, 
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Introduction
Let X i , . . .  jX n be independent identically distributed random variables (i.i.d. r.v.’s) 
having a probability density function / .  In the typical nonparametric set-up, nothing 
is assumed about /  except that it possesses a certain degree of smoothness, e.g., that 
it has r continuous derivatives.

Estimating /  via kernel smoothing is a sixty year old problem; M. Rosenblatt 
who was one of its originators discusses the subject’s history and evolution in the 
monograph by [13]. For some point x, the kernel smoothed estimator of f(x )  is 
defined by

fn,h(x) = ( 1)

where the kernel A  is a bounded function satisfying f  K (x)dx — 1 and f  K 2(x)dx < 
oo, and the positive bandwidth parameter h is a decreasing function of the sample 
size n. In this paper we will employ a particularly useful class of infinite order kernels 
namely the fiat-top family; see [7] for a general definition.

It is a well-known fact that optimal bandwidth selection is perhaps the most 
crucial issue in such nonparametric smoothing problems; see [3] and the references 
therein. The goal typically is minimization of the large-sample Mean Squared Er­
ror (MSE) of fnjfix). However, to do this minimization, the practitioner needs to 
know the degree of smoothness r. Using an infinite order kernel and focusing just 
on optimizing the order of magnitude of the large-sample MSE, it is apparent that 
the optimal bandwidth h must be asymptotically of order n -U(2H-i) that yields a 
large-sample MSE of order n~2r/(2r+1) (see, e.g., [2]).
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The problem of course is that, as previously mentioned, the underlying degree of 
smoothness r is typically unknown. In Section 3 of the paper at hand, we develop an 
estimator rn of r and prove its strong consistency. In order to construct our estimator 
rn, we operate under a class of functions that is slightly more general than, e.g., the 
Holder class; this class of functions is formally defined in Section 1 via eq. (3) or (4). 
Under such a condition on the tails of the characteristic function we are able to show 
in Section 2 that the optimized MSE of /„(re) is again of order n~2r̂ 2r+1̂  for possibly 
noninteger r.

Furthermore, in Section 4 we develop an adaptive estimator f n(x) that achieves 
the optimal MSE rate of n~2r̂ 2r+1̂  within a logarithmic factor despite the fact that 
r is unknown, see Examples after Theorem 3. Similar effect arises in the adaptive 
estimation problem of the densities, in particular, from the Holder class, see [1, 4, 5].

The estimaton problem of the density derivatives is actual as well; in particular 
for estimation of the logarithmic derivative. As the major theoretical result of our 
paper, we are able to prove a non-asymptotic upper bound for the MSE of the adaptive 
estimator of the density /  and f .  The rate of convergency in the mean square sense 
satisfies (for the estimators of /  in examples) the abovementioned optimal rate.

Section 5 contains some simulation results showing the performance of the esti­
mator f n(x) in practice.

Full investigation of the density function estimators will be presented in the paper
[12] .

1 Problem set-up and basic assumptions
Let X i , . . . ,  X n be i.i.d. having a probability density function / .  Denote ф(з) =  

f  elsxf(x)dx  the characteristic function of /  and the sample characteristic function 
Фп{э) = ^ QlsXk■ For some finite r > 0, define two families Хф and T v of 
bounded, i.e.,

3 0 < /  < oo : supveR.if(y) < 7, (2)

and continuous functions /  satisfying one of the following conditions respectively:

J |s|r |^(s)|ds < oo,

[  |s |r-e |<^(s)|ds < oo,

J N r+£|0 (s)|ds =  oo, for all e > 0, (3)

f  |s |r |0 (s)|ds — oo, for all 0 <  s < r. (4)

It is easy to verify that the derivative f  satisfies the relations (3) and (4) if 
/  G X^+l and f  € XT+1 respectively.

Define the family (respectively Xr,m) as the family of functions f  from T+ 
(respectively XT) but with /  being such that its characteristic function \<j>(s)\ has 
monotonously decreasing tails.

Consider the class E of kernel smoothed estimators f n,h{%) of f{x) as given in 
Щ- (1). Note that we can alternatively express /^ (ж ) in terms of the Fourier trans­
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form of kernel i.e.,

f&w = lit jkK(l) (̂ Йг) =hj A(I,(S’ h^ s ) * - isxds, i = 0 ;l, (5)
3-1 4 7

where X ^ (s }h) = f  К  ( | )  elsxdx and A ^(s,h) =  f  K ! ( | )  eiSXdx — —is/iA^(s, h). 
In this paper, we will employ the family of fiat-top infinite order kernels, i.e., we will 
let the function A^(s, h) be of the form

Г 1 if |s[ <  1 / f t ,
Ac(s, h) =  < g(sth) if 1/h < |s| < c/h,

У 0 if \s\ > c /h ,

where c is a fixed number in [1, oo) chosen by the practitioner, and g(s, h) is some 
properly chosen continuous, real-valued function satisfying g(s}h) = g(—s , h), 
g(s, 1) =  g(s/h , h), and \g(s, h)\ < 1, for any s, with g(l/h , h) = 1, and g(c/h , h) = 0; 
see [7]-[10] for more details on the above flat-top family of kernels.

Denote for every 0 < 7 < r the functions

S^(h) =  J |s|r_7|^(s)|ds, when h > 0, and $7(0) =  0.
l /h< \ s \< c / h

From (3) and (5) it follows that S7(h) = o(l) as h -¥  0 for /  g T7* and 7 =  0, as 
well as for /  G T T and 0 < 7 < r. In other cases 67(/i) =  00.

Define the following classes T r =  U T r and T T<m — U «Tv.m- 
The main aim of the paper is adaptive estimation of densities and their first 

derivatives from the class T r with the unknown r.

2 Asymptotic mean square optimal estimation of /
According to [10, 11] the mean square error (MSE) u2(fnjh) = Ef(fn,h(%) — / ( я ))2 of 
the estimators f n,h(%) £ H, /  € T r has the following form:

uj(fn,h) = U j ( h , c ) ~ ~ ^ J  K (v ) f{ x -h v )d v ^  , ( 6)

where U2(h, c) is the principal term of the MSE,

1 2

т  J (1 - 5 ( в , л ) Ж ф - ^  ,

l /h < \ s \<c /h

L\ =  f  K 2(v)dv. Thus, in particular, sup^e^ r J  К (v)f(x  — hv)dv < 00.
The optimal (in the mean square sense) value hP =  h°(n) is defined from mini­

mization of the principal term U2(h,c).

UUh,c) L if(x )
nh +
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Define the number h\ = h\(n) from the equality

(hl)3r+1- 2ig /(h°1) = ir2L if(x )
(co +  Ci(7))ra' (7)

In such a way we have proved the following theorem, which gives the rates of con­
vergence of the random quantities /°(:с) =  / пуо(х) and f njh о (ж). We can loosely call 
f®(x) and f n ĥo(x) ’estimators’ although it is clear that these functions can not be 
considered as estimators in the usual sense in view of the dependence of the band- 
widths h° and hJ on unknown parameters r and f ( x ). Nevertheless, this theorem can 
be used for the construction of bona fide adaptive estimators with the optimal and 
suboptimal converges rates; see, e.g., Examples 1 and 2 in what follows.

Theorem 1. Let f(x )  > 0. Then for the asymptotically optimal (with respect to 
bandwidth h) in the MSE sense ’estimator’ /°(#) of the function f  G T r and for the 
1estimator’ f n ĥo(x) of f  G fFT<m the following limit relations, as n -A- oo, hold

1°. sup 
feFr

inf u2s ( fU'h) -  Uj{h°, с) =  О ( i )  ;

2°. for every f  e T r,m with 7 — 0 if f  G and every 0 < у  < r if f  G FrjTn, 
as well as some constant C7, we have

«/(/n ) < <  C7 I t —27 ^ 2r+l-27
n > 1.

Remark 1. The definition (7) of h\ is essentially simpler than the definition of 
the optimal bandwidth h°. From Theorem 1 it follows, that the (slightly) suboptimal 
’estimator ’ / n>Ao can be successfully used instead.

Example 1. Consider an estimation problem of the function f  G satisfying the 
following additional condition

1
s |r+1 ln1̂  Is

as |s| —> oo, ip > 0.

We find the rates of convergence of the MSE u2(f®) and u2(fntho) :

( 8 )

h° and Uf(fn,h°) 0 ( n2rln2(l+ f)n
2 r + l

and using the piecewise linear flat-top kernel X^IN(s,h), introduced by [9] (see [10] as 
well)

A ? N(s,h) =

where (ж)*1' =  max(rc, 0) is the positive part function, we find
2(r+l)

П
and u2f (f%) =  О

1
n2r+1 ln2(1+̂ } n.

2 (r+l)
=  0
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Example 2. Consider an estimation problem of the function f  G Рт,тт satisfying the 
following additional condition:

1
1̂>(5)1 ~ n^+r as M-^00*I ̂  I

We find the rate of convergence of the MSE uj(f®) and u j( fnjho). From (7) we 
have

/ij ^  n a n d  °) "  О , as n —» oo.

Similarly to Example 1, as n  —> oo, for f  £ PT we find

h° «  n~*w ) and u}{f°) =  О =  о (u2f (fn ĥo)) .

Similar results can be obtained for the estimators of f .

3 Estimation of the degree of smoothness r
Define the functions

Фа(А}В) = J |s |a |<Ks)|ds, Фща(А ,В) = J |s|Q|<£n(s)|ds.

Let ($„)n>i and (pn)n>i be two given sequences of positive numbers chosen by the 
practitioner such that 5n —t 0 and pn oo as n —> oo. The sequence (5n) represents
the ’grid-size in our search of the correct exponent r, while (pn) represents an upper 
bound that limits this search.

Define the following sets of non-random sequences
C+ = {{An, Bn, Sn)n>i : An -+ oo, 0 < An < Bn ~+ oo, 5n 0 as n —> oo; for some mo > 2,

2̂7710(̂ +̂1+5,,}

^  ------< °°’ Фг+£̂ П) Bn) 00’ Ve > 0; Фг+8п {An, Bn) -» 00},
n>l

С = {fAn, Bn, 6n)n>i : An —> 00, 0 < An < Bn —> 00, 5n —̂ 0 as n —У 00; for some mo > 2,
_ j[j2mo(i?n+l+<Sn)

T̂tuo Ф’—SnC-̂ m-Sn) 0} Фг(т4п,5 п)  ̂00}
n>l

and for an arbitrary given H > 0 chosen by the practitioner, the estimators {r*)n>i 
and (rn)n>i of the parameter r in (3) and (4) respectively

rn — min[^n, * inf{fc ^  1 . 4?72.,(fc+i)jn{An, Bn) ^  H y {An,B n^6n) G C-f-j-)], (9)

rn =  тт[дп, {Sn * Ы {к  > 1 : Фп,кбп{АГ1, Bn) > t f , (An, Bni 5n) G C})]. (10)
Theorem 2. The estimators and rnt defined in (9) and (10) respectively have the 
following properties

a) if f  € and f or some 6n —> 0 the sequences (An>Bn, Sn) G C+, then
lim $nl {r* — r) = 0 Pj — a.s>Tl—J-OO

b) if f  G T r and for some 5n —> 0 the sequences (An^Bn,Sn) G C, then
lim S~1(rn — r) = 0 Pf — a. s.П—Н5Э
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4 Adaptive estimation of the functions /, f  £ J>
The purpose of this section is the construction and investigation of an adaptive es­
timator of the functions / ,  f  G T r with unknown r, which can either serve as the 
main estimator or can serve as a ’pilot’ estimator for the construction of an adaptive

A. A _

optimal and suboptimal bandwidths hr and h°.
We define an adaptive estimators of /  and f  from F T as follows

J P C )  -  ;  t  * £ ,  (* -  * . )  -  i  i  I л » , И , - ' - * . ) * ,  ( i i)
j=i i= i^

where Л ® -^) =  •фтК ^  = ^  I ̂ j - i(s)e iszd$ Is the smoothing kernel, and

Лfli{s) = Ac(s, l = 0; 1. The required bandwidths are defined by

hj = (j +  1)" j  > 1,

where r(j) =  r f  if /  G .F+ and r(j) =  77 if /  G recall that the estimators r f  and 
Tj are defined in (9) and (10) respectively.

Below С(т, l) are some constants and Ф7Дп) are concrete decreasing to zero 
functions. Main properties of constructed estimators are stated in the following 
theorem.

Theorem  3. Let the sequences (An, Bn,Sn) in the definition of the estimator r j  
belong to the set C+ and in the definition of the estimator rn to the set C. Let 7 =  0 
if f  G F f  and 7 G (0, r) if f  G F r, as well as r > 0 i f l  — 0 and r > 1 if l — 1. Then 
for every n > 1 the estimators (11) has the following properties:

sup «J(/n}) ^  +  C— ^   ̂ =  0; 1.
feFr n

Exam ples 1 and 2 revisited.
Under appropriate chosen 6 > 0 and sequences (An, Bni5n) in the definition of 

sets C+,C :
In Example 1 (case ( /  G F f) )

1 25 2r 25
Фо,о(^) ~  (^hn)_ * (In п)<1+2г)а и  n-i+s? • (In n) v+2r)2.

Then, according to Theorem 3, in this case the rate of convergence of adaptive density 
estimators of /  e  F f  differs from the rate of non-adaptive estimators in [10] on the 
extra log-factor only.

For the functions /  G F T and 7 G (0, min(r, 1)) from Example 2 it follows that

2 (г-т) S
Ф7(п) w n  . (In n) 1+2(t—t) as n —> 00.
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Figure 1: MSE of kernel estimators multiplied by n3̂ 4 versus n  G {25,2000}. Left 
chart corresponds to the estimator with piece-wise linear kernel characteristic 

function. Right chart corresponds to the estimator with infinitely-differentiable 
flat-top kernel characteristic function.

5 Simulation results

In this section we provide brief results of simulation study of the estimators introduced 
in Section 2. We examine kernel estimators of triangular probability density function 
f(x )  — (а — |ж|)/а2, \x\ < a belonging to the family T\ with characteristic function 
ф(з) = 2(1 — cos(as))/(as)2. Also ф($) meets requirements of the Example 2. Thus 
the bandwidth can be taken in the form h = 0(n~ 1̂ 4) and expected convergence rate 
of the kernel estimator MSE is n _3//4.

Two flat-top kernels have been used in the simulation. First one has the piece-wise 
linear kernel characteristic function introduced in [10]: A(s) =  {1, \s\ < 1; (c—|s|)/(c— 
1),1 < |s| < c;0,|s| > c}. Second case refers to the infinitely-differentiable flat-

top kernel characteristic function (see [6]) A($) =  {1, |s| < c\exp 

c < |s| < 1; 0, \s\ > 1}.

-bexp[—b/(js|— c):

(W-1)2

The main goal of the simulation study is investigation of the MSE behavior for the 
kernel estimator with the growth of sample size. We generate sequence of 150 samples 
for each sample size from 25 to 2000 with step 25, then calculate the estimator MSE 
multiplied by n3/4 and expect visual stabilization of the sequence of resulting values 
with growth of n.

Two typical examples are presented at the Figure 1. Both cases refer to estimation 
of triangle density function f (x)  with unit variation (which support is bounded by 
±2.45, a — 2.45) at the point x = 1.0 by kernel estimators with flat-top kernels. The 
expected stabilization is observing in both cases.
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