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We propose a quasi-particle model for the thermodynamic description of the gluon plasma which takes 
into account non-abelian characteristics of the gluonic field. This is accomplished utilizing massive non-
linear plane wave solutions of the classical equations of motion with a variable mass parameter, reflecting 
the scale invariance of the Yang–Mills Lagrangian. For the statistical description of the gluon plasma 
we interpret these non-linear waves as quasi-particles with a temperature dependent mass distribution. 
Quasi-Gaussian distributions with a common variance but different temperature dependent mean masses 
for the longitudinal and transverse modes are employed. We use recent Lattice results to fix the mean 
transverse and longitudinal masses while the variance is fitted to the equation of state of pure SU (3) on 
the Lattice. Thus, our model succeeds to obtain both a consistent description of the gluon plasma energy 
density as well as a correct behavior of the mass parameters near the critical point.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Strongly interacting non-abelian gauge theories are described 
by SU (N) algebras. These theories possess a strong coupling in 
the low temperature regime prohibiting perturbative treatment. 
In addition, the associated degrees of freedom occur exclusively 
in a confined phase. In higher temperatures, near and above the 
critical point of SU (N) gauge theories, it is expected that the in-
teraction of fermions and gauge fields, namely quarks and gluons 
in the case of SU (3) color (QCD), is significantly weaker, leading 
to the deconfined phase known as quark gluon plasma (QGP) [1]. 
The thermodynamical treatment of QGP has led to the introduction 
of quasi-particle models (QPMs) [2,3], primarily aiming to explain 
the QGP equation of state as obtained from Lattice gauge theory 
simulations of QCD at finite temperature. In these models and at 
temperatures higher than the critical value it was assumed that the 
thermodynamics of a system of interacting massless gluons may be 
approached by an ideal gas of massive noninteracting gluons. How-
ever, the above models [4] failed to explain the most recent Lattice 
results [5].

Due to asymptotic freedom, the interaction of quarks and glu-
ons is expected to be very weak at extremely high temperatures. 
Thus, in these thermodynamic conditions the picture of an ideal 
gas of (almost) non-interacting particles for the quark–gluon sys-
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tem should provide a good approximation. Nevertheless, as sup-
ported by the results of the experiments at the Relativistic Heavy 
Ion Collider (RHIC) [6], in the neighborhood of the critical tem-
perature Tc , associated with the transition from hadronic matter 
to QGP, the interaction is strong and the quark–gluon system is 
far from the ideal gas scenario [4,7] sharing features of a perfect 
fluid [8]. This holds in particular also for the gluon field alone 
where accurate Lattice results [5,9] demonstrate that the gluon 
system remains far from the ideal behavior even for temperatures 
5 times larger than Tc .

A useful and common strategy is to restrict the analysis to the 
gluonic sector considering the emergence of a (non-ideal) gluon 
plasma above the associated critical temperature. To capture this 
non-ideal behavior the QPMs [10–20] introduce temperature de-
pendent parameters which are suitably adjusted in order to fit the 
existing Lattice results. A basic assumption of these models is the 
presence of a temperature dependent mass for the gluons, a prop-
erty which may lead to thermodynamic inconsistencies [21] within 
the Landau statistical approach [22]. This is due to the fact that the 
temperature dependent mass becomes a thermodynamic quantity 
affecting the usual relations connecting pressure with energy den-
sity. This inconsistency may be healed by introducing an appropri-
ate constraint in models involving vacuum energy B(T ) [21]. How-
ever, a much more natural way to overcome this issue is to use the 
Pathria [23] approach starting the calculations of thermodynamic 
quantities and equation of state from the energy density instead 
of the pressure [24]. The pressure is obtained via the integration 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of a fundamental thermodynamic relation, taking into account the 
temperature dependence of the gluon mass [24]. The latter is de-
termined by fitting the Lattice results for the equation of state of 
pure SU (3) at finite temperature [5]. With the suitable tempera-
ture dependence for the gluon mass, the description of Lattice data 
with such an improved QPM turns out to be quite satisfactory. 
However, despite of being free from thermodynamic inconsisten-
cies QPMs still include controversial issues from the physical point 
of view. The use of massive gluons and their treatment as free 
particles is not fully justified. To resolve this issue, a recent work 
[25] assumed that the gluon mass emerges through the propaga-
tion of gluons in a plasma environment as a collective effect and 
is furthermore related to the associated plasma frequency. Lattice 
results for the equation of state are sufficiently reproduced with 
the use of a single temperature dependent parameter. Regarding 
the origin of gluon mass, a consistent interpretation is possible 
in terms of classical solutions of the corresponding gauge the-
ory equations of motion (e.g. see [26] and references therein). In 
particular, [27] derives a class of nonlinear plane wave SU (2) so-
lutions obeying a massive relativistic dispersion relation. The mass 
parameter is free to vary as a consequence of the scale invariance 
of the Yang–Mills Lagrangian. Despite the fact that such a scenario 
is based on fundamental properties of Yang–Mills dynamics it has 
not been associated with the gluon mass in QPMs up to now.

A novel aspect in the framework of QPMs emerged by recent 
Lattice SU (3) calculations of the temperature dependence of the 
dynamically generated gluon mass by estimating the inverse gluon 
propagator in the infra-red limit [29]. These calculations obtained 
the gluon mass for a temperature regime just above the criti-
cal point, providing further constraints in the phenomenology of 
QPMs. There are some important consequences of the Lattice re-
sults: firstly the dynamical masses of the transverse and longitudi-
nal gluon degrees of freedom differ at low temperatures. Secondly 
both masses (longitudinal and transverse) behave smoothly as a 
function of the temperature just beyond the critical point. Thus, 
the stiff increase of quasiparticle masses as the critical region is 
approached from above, is incompatible with the Lattice [29]. A so-
lution to this controversy has been proposed in the framework of 
QPMs through a Polyakov loop coupling to the quasiparticles [30].

In the present work we develop a QPM which takes into ac-
count the most recent Lattice results for the temperature depen-
dence of the dynamical gluon mass [29] and at the same time is 
in consistency with the older Lattice calculations of the equation of 
state [5]. The proposed model suggests that the non-linear plane 
wave solutions of the equations of motion correspond to quasi-
particles with variable mass. We develop such a scenario based 
on a subset of classical solutions for the gauge field, namely those 
which originate from the SU (2)-sector contained in SU (3), assum-
ing that the main characteristics of its non-abelian character are 
captured by this class. We demonstrate that the non-abelian char-
acter of the gluons introduces significant changes in their thermo-
dynamical treatment which are taken into account in the proposed 
QPM. In contrast to other statistical models which use glueballs 
with a discrete mass spectrum [31] here we assume a continuously 
varying gluon mass characterized by a specific probability density. 
To take into account the difference between transverse and longi-
tudinal masses, as calculated from the Lattice, we use two different 
mass distributions for transverse and longitudinal gluonic degrees 
of freedom respectively. Furthermore, since the gluon mass dis-
tributions are unknown we choose truncated Gaussians (negative 
mass values are excluded) in each case. The Lattice results (extrap-
olating to high temperatures when necessary) [29] are employed 
to fix the temperature depended mean transverse and longitudi-
nal masses. To reduce the number of free parameters we further 
assume that the variation is the same in both quasi-Gaussian dis-
tributions. Thus, the temperature depended variance is the only 
free parameter in our model which is determined via a fit to the 
Lattice results for the SU (3) equation of state [5]. The main suc-
cess of the proposed non-abelian quasi-particle model (NAQPM) is 
the very good description of two different Lattice results for the 
gluon plasma using a single free parameter.

The paper is organized as follows. In Section 2 we present the 
non-linear plane wave solutions of the SU (2) Yang–Mills theory 
and we reveal their properties which are relevant for the subse-
quent formulation of the NAQPM. In section 3 we introduce the 
NAQPM for the gluon plasma and the corresponding statistical 
treatment. In section 4 we discuss our results concerning the de-
pendence of the parameters of the proposed model on temperature 
as well as their compatibility with existing Lattice results. Finally, 
in section 5 we give our concluding remarks.

2. Nonlinear plane waves in S U (2) Yang–Mills theory

A simplified description of the gluon field, capturing the basic 
phenomenological characteristics, can be obtained by the classical 
SU (2) Yang–Mills theory. Since SU (2) is a subgroup of SU (3), we 
will restrict our analysis to this case which is easier to handle and 
at the end of this section we will give some arguments supporting 
that our treatment can be transferred to the more realistic descrip-
tion with colored SU (3) Yang–Mills. Neglecting fermionic (matter) 
degrees of freedom the Lagrangian density of this model is written 
as:

L = −1

4
Fa

μνFμνa (1)

where Fa
μν is the antisymmetric field tensor Fa

μν = ∂μ Aa
ν −

∂ν Aa
μ − g · εabc Ab

μ Ac
ν of the gauge field Aa

μ . The corresponding 
classical equations of motion for the gauge field are:

∂μFa
μν + g · εabc · Ab

μF c
μν = 0. (2)

The equations (2) permit plane wave solutions of the form:

Aa
μ = 1

g
· εa

μ · �(ω · t − �k · �x) (3)

where � is a scalar function of the plane wave phase

ξ = ω · t − �k · �x (4)

and εa
μ (for a = 1, 2, 3 and μ = 0, 1, 2, 3) is given by

εa
μ =

⎛
⎜⎜⎜⎜⎜⎝

−k1 −k2 −k3

m + k2
1

ω+m
k1·k2
ω+m

k1·k3
ω+m

k1·k2
ω+m m + k2

2
ω+m

k2·k3
ω+m

k1·k3
ω+m

k2·k3
ω+m m + k2

3
ω+m

⎞
⎟⎟⎟⎟⎟⎠

(5)

The momentum four-vector kμ = (ω, �k) satisfies the dispersion re-
lation ω2 = �k2 + m2 for an arbitrary mass parameter m. Note that 
the three columns (a = 1, 2, 3) of the above matrix (5) are non-
other than the three orthonormal spacelike vectors,1 orthogonal 
also to the timelike four-momentum vector kμ . As such, the so-
lution obeys automatically the Lorentz gauge condition ∂μ Aμa = 0
since for plane waves it becomes equivalent to the transversality 
condition kμ Aμa = 0.

The solution (3) is most conveniently derived by the authors 
of [27] on the proper time frame kμ = (m, �0) with the gauge fix-
ing condition Aa

o = 0. On that frame, A1
1 = A2

2 = A3
3 = (m/g)�(ξ)

1 Note that εa
μεbμ = −m2δab holds.
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with all other components equal to zero and �(ξ) satisfying the 
equation:

�′′(ξ) + 2 · �(ξ)3 = 0 . (6)

The above equation possesses solutions of the form:

�(ξ) = sn[ξ ;−1] = cn[√2ξ ; 1

2
] (7)

where sn[ξ ; k2](cn[ξ ; k2]) is the Jacobi elliptic sine (cosine) func-
tion with elliptic modulus k [28]. Thus, the solutions (5) describe 
periodic (anharmonic) plane waves with period P = 4K (k)/

√
2

where K (k) is the complete elliptic integral of the first kind. For 
k2 = 1/2, the period numerically becomes P = 5.244. A Lorentz 
boost with parameters γ = ω/m, �β = �k/ω leads immediately to 
the general form (3). The origin of the mass of the gluon field 
m is traced in the non-linear terms in the Lagrangian (1) due to 
the gluon self-interaction. Furthermore, m is free to take any posi-
tive value, reflecting the scale invariance of Eq. (1). Thus, although 
scale-free, the Yang–Mills classical solutions depend on an arbi-
trary mass-scale m due to the nonlinearity of the theory.

Solutions of the form of Eq. (7) are also found in the φ4 scalar 
field theory forming a complete (non-orthogonal) basis [32] for 
this system. Since there is a mapping of Yang–Mills SU (N) to the 
scalar φ4 theory [33] one may argue that the solutions in Eq. (7)
provide also a non-orthogonal basis for SU (3) Yang–Mills gauge 
theory. The question is if and how the non-linear plane waves (7)
can capture the main features of gluon plasma thermodynamics. 
Undoubtedly they will influence the counting of gluon microstates. 
The period of the non-linear plane waves is not 2π but P = 5.244, 
thus the number of such stationary states fitting in a fixed volume 
V is greater than the corresponding number for linear plane waves 

by a factor 
(

2π
P

)3
.

3. The NAQPM

Let us now proceed with the formulation of the NAQPM as dis-
cussed in the introduction. It is useful to list the main assumptions 
of the model:

• The microstates of the gluon field at thermal equilibrium con-
sist from non-linear plane wave solutions of the SU (2) classi-
cal equations of motion with period P = 5.244. Such classical 
field configurations in quark–gluon plasma studies have been 
used before [34]. Within our treatment the classical SU (2)

non-linear plane waves correspond to massive quasi-particles 
with a variable mass m. Since the SU (3) algebra contains three 
SU (2) subspaces, there exist three different ways to embed 
the above SU (2) solution in SU (3). The vanishing trace con-
dition reduces by one the diagonal degrees of freedom, thus 
we effectively identify eight degrees of freedom, in consistency 
with the full SU (3) case. In a more precise sense, the NAQPM 
does not consider the entire SU (3) solution space but rather 
the locally isomorphic case of SU (2) × SU (2) × SU (2)/U (1) al-
gebra. Nevertheless, this space contains the basic ingredient of 
the non-abelian character, namely the non-linearity due to the 
gauge field self-interaction. A recent publication [35] has found 
a larger class of SU (3) plane wave solutions which could in 
principle be included in the present model. However, these so-
lutions possess an infinite countable set of periods in contrast 
to the solutions in the SU (2) subspace which have fixed pe-
riod P = 5.244. Thus, their inclusion is highly non-trivial and 
goes beyond the scope of the present work.

• Lattice calculations provide evidence that the transverse and 
longitudinal gluonic degrees of freedom acquire temperature 
depended masses which differ at low temperatures and ap-
proach each other as the temperature increases [29]. For 
sufficiently high temperatures these masses attain a com-
mon asymptotic linear dependence on the temperature in 
accordance with perturbation theory predictions [36]. In the 
NAQPM this information is incorporated assuming quasi-
Gaussian (with restriction to positive values only) distributions 
for the gluon mass m which have well determined but dif-
ferent, temperature dependent, mean values μtr(T ) ∼ 〈m〉tr
and μlo(T ) ∼ 〈m〉lo for the transverse (tr) and longitudinal (lo) 
gluonic degrees of freedom respectively. In each case the aver-
age is meant over the microstates of the corresponding gluon 
components (transverse or longitudinal) with temperature de-
pended weights. In such a description the associated variances 
σtr ∼

√
〈m2〉tr − μ2

tr and σlo ∼
√

〈m2〉lo − μ2
lo depend also on 

temperature and present mass related response functions of 
the gluonic system.

• Within the NAQPM the temperature depended parameters μtr
and μlo are fixed by the recent lattice results [29] on the 
gluon propagator. Since we need to calculate thermodynamic 
properties of the gluon system also for temperatures beyond 
those investigated in [29], we will appropriately extrapolate 
μtr and μlo . This extrapolation takes into account that in the 
high temperature regime both quantities approach each other 
and attain asymptotically a linear temperature dependence as 
dictated by perturbation theory [36]. The variances σtr and σlo
are the free parameters of the model which are determined in 
order to fit the Lattice results on the equation of state of the 
SU (3) Yang–Mills theory [5]. To reduce the number of free pa-
rameters we further assume that σtr(T ) = σlo(T ) ≡ σ(T ). We 
confirmed numerically that allowing σlo(T ) 
= σtr(T ) does not 
influence the results presented in the next section.

To calculate the thermodynamic properties of the gluon sys-
tem within the NAQPM we follow the procedure described in [25]
to avoid thermodynamic inconsistencies. The energy density is the 
sum of two contributions, coming from the transverse and longitu-
dinal degrees of freedom respectively, given by (β = 1/T , kB = 1):

ε = εtr + εlo (8)

where

εi =
∞∫

0

dm Ni(μi,σ ) exp[− (m − μi)
2

2σ 2
]

·
∫

d3�k g f ,i

P3
· ω(�k,m)

eβω − 1
; i = tr, lo (9)

with

g f ,tr = 2 · 8 ; g f ,lo(k) = 8 · (1 −
�k2

�k2 + m2
) (10)

and

Ni ≡ Ni(μi,σ ) = 1

σ

√
2

π
·
(

1 + Er f (
μi√
2 · σ )

)−1

; i = tr, lo.

Counting the microstates we have included the prefactor (
2π

P

)3

and Ntr , Nlo are normalization factors for the truncated 

normal distributions describing the gluon mass fluctuations for 
the transverse and longitudinal degrees of freedom respectively. 
In the counting of the number of degrees of freedom, we intro-

duce a momentum depending factor g f ,lo(k) = 8(1 − k2

2 2
) for 
k + m
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the longitudinal component which takes into account the fact that 
the longitudinal degrees of freedom vanish for large momenta. For 
the transverse degrees of freedom we use g f ,tr = 2 ·8 = 16. In both 
cases the 8 corresponds to the eight colored gluons.

Setting k = T · x transverse and longitudinal energy contribu-
tions respectively become:

εtr = 64π ·Ntr · T 4

P3

∞∫
0

dm exp[− (m − μtr)
2

2σ 2
]

·
∞∫

0

dx x2 ·
√

x2 + (m/T )2

e
√

x2+(m/T )2 − 1

εlo = 32π ·Nlo · T 4

P3

∞∫
0

dm exp[− (m − μlo)
2

2σ 2
]

·
∞∫

0

dx x2 · (1 − x2

x2 + (m/T )2
) ·

√
x2 + (m/T )2

e
√

x2+(m/T )2 − 1
.

Substituting x = m
T · sinh(t) and using known properties of the 

Bessel functions, the integration over x is straightforward, leading 
to the expressions:

εtr = 64π ·Ntr · T 4

P3

∞∑
l=1

∞∫
0

dm exp[− (m − μtr)
2

2σ 2
] · 1

l4

·
[

3(
m

T
l)2 · K2(

m

T
l) + (

m

T
l)3 · K1(

m

T
l)
]

εlo = 32π ·Nlo · T 4

P3

∞∑
l=1

∞∫
0

dm exp[− (m − μlo)
2

2σ 2
] · 1

l4

· (m

T
l)3 · K1(

m

T
l) (11)

with Kν the modified Bessel functions [28]. The mass integral is 
performed numerically. Having calculated the energy density, the 
pressure is obtained [25] integrating the thermodynamically con-

sistent relation ε = T
∂ P

∂T
− P :

P

T
= Po

To
+

T∫
To

dT
ε

T 2
. (12)

The integral in Eq. (12) is also performed numerically. The final 
result for the energy density as well as the pressure, depends of 
course on the parameters μtr(T ), μlo(T ) and σ(T ).

4. Numerical results

Using equations (8), (11), (12) we calculate the energy density 
and pressure for the gluon system at finite temperature. For tem-
peratures T /Tc � 1.85 we use the lattice data presented in [29]
for the transverse and longitudinal mean masses employing lin-
ear interpolation to determine their values in between. Beyond 
T /Tc ≈ 1.85 longitudinal and transverse masses approach each 
other and their common behavior in this high temperature regime 
becomes linear following the relation:
μ(T )/Tc = 1.18(T /Tc) + 0.48 (13)

obtained by a linear fit to the lattice data [29] in the region 
T > 1.5, with Tc ≈ 270 MeV. The variance σ is determined by a 
Monte-Carlo search such that the lattice data for the energy den-
sity and pressure are fitted within 10−4 accuracy.2 Since there are 
two sets of lattice results for the gluon energy density and pres-
sure given in [5] and [9] we have fitted both of them. In [5] the 
equations of state are calculated for a relatively small temperature 
range above Tc while in [9] the results extend to the region of 
very high temperatures. Close to the critical region there is a small 
deviation between the two lattice calculations probably due to fi-
nite size effects. Within our approach this deviation is reflected in 
the values of σ(T ) necessary to fit the corresponding lattice re-
sults.

In order to guide the search for the σ(T ) profile so that an 
approximate continuous function emerges, we use the following 
strategy: Assume that we want to determine the parameter σ
of our model for an (ordered) sequence of temperatures Ti , i =
1, 2, .., N with Ti+1 > Ti . Furthermore, assume that we have lo-
cated the optimal value σ(Ti) for the temperature Ti . To estimate 
the value σ(Ti+1) at the subsequent temperature Ti+1 we explore 
a region centered at σ(Ti) and extending up to 50% around it in 
each direction. This procedure turns out to converge surprisingly 
fast to the optimal value. This is crucial since the numerical cal-
culations of the integrals in Eqs. (11) are performed with high 
accuracy consuming CPU time. The results of our numerical anal-
ysis concerning the equation of state of the gluonic system are 
presented in Fig. 1.

We observe an excellent agreement between the lattice results 
given in references [5,9] and the calculations using the NAQPM 
introduced in the present work. Note that the agreement is main-
tained even in the high-temperature regime where the values ap-
proach from below the Stefan–Boltzmann limit, indicated by the 
dotted line in Fig. 1(a), (b). In Fig. 2(a), (b) we show the depen-
dence of the parameters μtr , μlo (a) and σ (b) on the temper-
ature T as obtained by the Monte-Carlo optimization procedure 
described above. In Fig. 2(a) we also display with points the lat-
tice data. We emphasize that the linear dependence of the mass 
on T for T /Tc ≥ 1.9, as demonstrated in Fig. 2(a), is implied by 
the lattice calculations in [29]. Notice that a similar functional 
form is obtained in high-T perturbative QCD [36]. The red curve 
in Fig. 2(b) is obtained fitting the results of reference [5] while the 
black curve is the NAQPM result for the description of the corre-
sponding lattice data in reference [9]. The small shift in σ(T ) is 
needed to capture the deviation between the two lattice results. 
Furthermore, Figs. 2(a) and 2(b) indicate that in the high temper-
ature regime the variance σ is proportional to the corresponding 
common mean mass, as both parameters become linear in T. This 
is a sign for the presence of a strong correlation between μ and 
σ and indicates that the mass distribution becomes in fact mono-
parametric.

A final comment is in order here. As seen in Fig. 2(b), when 
approaching the critical point an increase of the variance σ is ob-
served which does not appear in the plot of the masses shown 
in Fig. 2(a). Thus, within NAQPM criticality is reflected in the 
temperature dependence of σ which defines naturally a measure 
for the mass fluctuations. This allows for an interpretation of the 
gluon deconfining transition as a change in the gluon mass spec-
trum.

2 In fact the results are quite robust. Changing the convergence criterion from 
10−4 to 10−3 leads to a change in the second decimal digit for the parameter σ .
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Fig. 1. (Color online.) (a) The energy density scaled by T 4 of the gluon system as 
obtained by the NAQPM (red and black lines) and the lattice results for the same 
quantity (red asterisks and black circles). (b) The pressure (also scaled by T 4) cal-
culated with the NAQPM (shown with red and black lines) and the corresponding 
lattice results. The plots display the region T ≥ Tc and t denotes the reduced tem-
perature (T − Tc)/Tc . The lattice results are from [5] (red crosses) and [9] (black 
triangles). In both plots the dotted line indicates the Stefan–Boltzmann limit.

5. Concluding remarks

We have introduced a quasi-particle model for the thermody-
namical description of the gluon plasma which takes non-abelian 
characteristics into account. In particular, the microstates build-
ing up the statistical ensemble for the gluon are determined from 
non-linear plane wave solutions of the associated classical dy-
namics, containing a free mass parameter. They correspond to 
quasi-particles with a continuously varying mass having a quasi-
Gaussian distribution with temperature dependent mean mass and 
variance. To bridge the gap with the Lattice [29] we use differ-
ent mean masses for transverse and longitudinal gluonic degrees 
of freedom keeping a common variance. Tuning appropriately the 
variance σ , which is the only free parameter in our model, we 
reproduce with high accuracy the results of the most recent Lat-
tice calculations for the gluon plasma equation of state. At the 
same time we avoid singular behavior of the mean mass close 
to the critical point, a feature which is common in QPMs but 
is in contradiction to Lattice results. In our approach the traces 
of the transition to the gluon plasma phase are imprinted on 
the rapid increase of the gluon mass variance in the neighbor-
hood of the critical point. It would be interesting to look for a 
similar behavior in the phase diagram when matter degrees of 
freedom are included. However, this is left for future investiga-
tions.
Fig. 2. (Color online.) (a) The ratios μtr
Tc

and μlo
Tc

as a function of the temperature T . 
With points we show the lattice data taken from [29]. (b) The temperature depen-
dence of the variance σ scaled by the critical temperature Tc . The plots display the 
region T ≥ Tc and t denotes the reduced temperature (T − Tc)/Tc . The black and 
red lines are obtained through a fit to the results of Ref. [9] and Ref. [5] respectively.
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