29 research outputs found

    Transcriptional Assessment by Microarray Analysis and Large-Scale Meta-analysis of the Metabolic Capacity of Cardiac and Skeletal Muscle Tissues to Cope With Reduced Nutrient Availability in Gilthead Sea Bream (Sparus aurata L.)

    Get PDF
    The effects of nutrient availability on the transcriptome of cardiac and skeletal muscle tissues were assessed in juvenile gilthead sea bream fed with a standard diet at two feeding levels: (1) full ration size and (2) 70 % satiation followed by a finishing phase at the maintenance ration. Microarray analysis evidenced a characteristic transcriptomic profile for each muscle tissue following changes in oxidative capacity (heart > red skeletal muscle > white skeletal muscle). The transcriptome of heart and secondly that of red skeletal muscle were highly responsive to nutritional changes, whereas that of glycolytic white skeletal muscle showed less ability to respond. The highly expressed and nutritionally regulated genes of heart were mainly related to signal transduction and transcriptional regulation. In contrast, those of white muscle were enriched in gene ontology (GO) terms related to proteolysis and protein ubiquitination. Microarray meta-analysis using the bioinformatic tool Fish and Chips (http://fishandchips.genouest.org/index.php) showed the close association of a representative cluster of white skeletal muscle with some of cardiac and red skeletal muscle, and many GO terms related to mitochondrial function appeared to be common links between them. A second round of cluster comparisons revealed that mitochondria-related GOs also linked differentially expressed genes of heart with those of liver from cortisol-treated gilthead sea bream. These results show that mitochondria are among the first responders to environmental and nutritional stress stimuli in gilthead sea bream, and functional phenotyping of this cellular organelle is highly promising to obtain reliable markers of growth performance and well-being in this fish species. © 2014 Springer Science+Business Media New York.This work was funded by the EU seventh Framework Programme by the AQUAEXCEL (Aquaculture Infrastructures for Excellence in European Fish Research, FP7/2007-2012; grant agreement no. 262336) project. Additional funding was obtained from the Generalitat Valenciana (research grant PROMETEO 2010/006) and the Spanish Government through AQUAGENOMICS project (Consolider-Ingenio-2010 Programme).Peer Reviewe

    Reactivity of homoleptic and heteroleptic core paddle wheel Cu(II) compounds

    Get PDF
    The compound [Cu(μ-Pip)(μ-OAc)(MeOH)]2 (1) (Pip=Piperonylate, OAc=acetate, MeOH=methanol) has been obtained in high percentage yield. Its reactivity with pyridine/pyrazole derivative ligands (pyridine (py), 3-phenylpyridine (3-Phpy) and 4-acetylpyridine (4-Acpy)) and 3,5-dimethylpyrazole (3,5-dmpz) leads to four monomeric compounds: [Cu(Pip)2(dPy)2(H2O)] (dPy=py (2), 3-Phpy (3) and 4-Acpy (4a)) and [Cu(Pip)2(3,5-dmpz)2] (5). Furthermore, the reaction of 1 with HPip in MeOH:DMF solvent under reflux conditions yields the homoleptic core paddle-wheel compound [Cu(μ-Pip)2(DMF)]2·2DMF (6). The reaction between 6 and 2-benzylpyridine (2-Bzpy) yields the paddle-wheel core compound [Cu(Pip)2(2-Bzpy)]2 (7). All compounds have been fully characterized by analytical and spectroscopic techniques and their X-ray crystal structures have been determined. In this set of compounds, the carboxylate ligand (Pip) displays different coordination modes (monodentate (2-4), bidentate chelate (5) and bridged (1, 6 and 7)). Moreover, their extended structures are discussed: the crystal packing indicates hydrogen bond propagation, which defines 1D (2-5) or 2D (6 and 7) supramolecular networks

    Cloning of somatolactin alpha, beta forms and the somatolactin receptor in Atlantic salmon: Seasonal expression profile in pituitary and ovary of maturing female broodstock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatolactin (Sl) is a fish specific adenohypophyseal peptide hormone related to growth hormone (Gh). Some species, including salmonids, possess two forms: Sl alpha and Sl beta. The somatolactin receptor (slr) is closely related to the growth hormone receptor (ghr). Sl has been ascribed many physiological functions, including a role in sexual maturation. In order to clarify the role of Sl in the sexual maturation of female Atlantic salmon (Salmo salar), the full length cDNAs of slr, Sl alpha and Sl beta were cloned and their expression was studied throughout a seasonal reproductive cycle using real-time quantitative PCR (RTqPCR).</p> <p>Methods</p> <p>Atlantic salmon Sl alpha, Sl beta and slr cDNAs were cloned using a PCR approach. Gene expression of Sl alpha, SL beta and slr was studied using RTqPCR over a 17 month period encompassing pre-vitellogenesis, vitellogenesis, ovulation and post ovulation in salmon females. Histological examination of ovarian samples allowed for the classification according to the degree of follicle maturation into oil drop, primary, secondary or tertiary yolk stage.</p> <p>Results</p> <p>The mature peptide sequences of Sl alpha, Sl beta and slr are highly similar to previously cloned salmonid forms and contained the typical motifs. Phylogenetic analysis of Atlantic salmon Sl alpha and Sl beta shows that these peptides group into the two Sl clades present in some fish species. The Atlantic salmon slr grouped with salmonid slr amongst so-called type I ghr. An increase in pituitary Sl alpha and Sl beta transcripts before and during spawning, with a decrease post-ovulation, and a constant expression level of ovarian slr were observed. There was also a transient increase in Sl alpha and Sl beta in May prior to transfer from seawater to fresh water and ensuing fasting.</p> <p>Conclusion</p> <p>The up-regulation of Sl alpha and Sl beta during vitellogenesis and spawning, with a subsequent decrease post-ovulation, supports a role for Sl during gonadal growth and spawning. Sl could also be involved in calcium/phosphate mobilization associated with vitellogenesis or have a role in energy homeostasis associated with lipolysis during fasting. The up-regulation of both Sl alpha and Sl beta prior to fasting and freshwater transfer, suggests a role for Sl linked to reproduction that may be independent of the maturation induced fasting.</p

    Epidemiological trends of HIV/HCV coinfection in Spain, 2015-2019

    Get PDF
    Altres ajuts: Spanish AIDS Research Network; European Funding for Regional Development (FEDER).Objectives: We assessed the prevalence of anti-hepatitis C virus (HCV) antibodies and active HCV infection (HCV-RNA-positive) in people living with HIV (PLWH) in Spain in 2019 and compared the results with those of four similar studies performed during 2015-2018. Methods: The study was performed in 41 centres. Sample size was estimated for an accuracy of 1%. Patients were selected by random sampling with proportional allocation. Results: The reference population comprised 41 973 PLWH, and the sample size was 1325. HCV serostatus was known in 1316 PLWH (99.3%), of whom 376 (28.6%) were HCV antibody (Ab)-positive (78.7% were prior injection drug users); 29 were HCV-RNA-positive (2.2%). Of the 29 HCV-RNA-positive PLWH, infection was chronic in 24, it was acute/recent in one, and it was of unknown duration in four. Cirrhosis was present in 71 (5.4%) PLWH overall, three (10.3%) HCV-RNA-positive patients and 68 (23.4%) of those who cleared HCV after anti-HCV therapy (p = 0.04). The prevalence of anti-HCV antibodies decreased steadily from 37.7% in 2015 to 28.6% in 2019 (p < 0.001); the prevalence of active HCV infection decreased from 22.1% in 2015 to 2.2% in 2019 (p < 0.001). Uptake of anti-HCV treatment increased from 53.9% in 2015 to 95.0% in 2019 (p < 0.001). Conclusions: In Spain, the prevalence of active HCV infection among PLWH at the end of 2019 was 2.2%, i.e. 90.0% lower than in 2015. Increased exposure to DAAs was probably the main reason for this sharp reduction. Despite the high coverage of treatment with direct-acting antiviral agents, HCV-related cirrhosis remains significant in this population

    Anti-tumour necrosis factor discontinuation in inflammatory bowel disease patients in remission: study protocol of a prospective, multicentre, randomized clinical trial

    Get PDF
    Background: Patients with inflammatory bowel disease who achieve remission with anti-tumour necrosis factor (anti-TNF) drugs may have treatment withdrawn due to safety concerns and cost considerations, but there is a lack of prospective, controlled data investigating this strategy. The primary study aim is to compare the rates of clinical remission at 1?year in patients who discontinue anti-TNF treatment versus those who continue treatment. Methods: This is an ongoing, prospective, double-blind, multicentre, randomized, placebo-controlled study in patients with Crohn?s disease or ulcerative colitis who have achieved clinical remission for ?6?months with an anti-TNF treatment and an immunosuppressant. Patients are being randomized 1:1 to discontinue anti-TNF therapy or continue therapy. Randomization stratifies patients by the type of inflammatory bowel disease and drug (infliximab versus adalimumab) at study inclusion. The primary endpoint of the study is sustained clinical remission at 1?year. Other endpoints include endoscopic and radiological activity, patient-reported outcomes (quality of life, work productivity), safety and predictive factors for relapse. The required sample size is 194 patients. In addition to the main analysis (discontinuation versus continuation), subanalyses will include stratification by type of inflammatory bowel disease, phenotype and previous treatment. Biological samples will be obtained to identify factors predictive of relapse after treatment withdrawal. Results: Enrolment began in 2016, and the study is expected to end in 2020. Conclusions: This study will contribute prospective, controlled data on outcomes and predictors of relapse in patients with inflammatory bowel disease after withdrawal of anti-TNF agents following achievement of clinical remission. Clinical trial reference number: EudraCT 2015-001410-1

    A highly water stable meta-carborane based copper-metal-organic framework for efficient high-temperature butanol separation

    No full text
    Biofuels are considered sustainable and renewable alternatives to conventional fossil fuels. Biobutanol has recently emerged as an attractive option compared to bioethanol and biodiesel, but a significant challenge in its production lies in the separation stage. The current industrial process for the production of biobutanol includes the ABE (acetone-butanol-ethanol) fermentation process from biomass; the resulting fermentation broth has a butanol concentration of no more than 2 wt% (the rest is essentially water). Therefore, the development of a cost-effective process for separation of butanol from dilute aqueous solutions is highly desirable. The use of porous materials for the adsorptive separation of ABE mixtures is considered a highly promising route, as these materials can potentially have high affinities for alcohols and low affinities for water. To date, zeolites have been tested toward this separation, but their hydrophilic nature makes them highly incompetent for this application. The use of metal-organic frameworks (MOFs) is an apparent solution; however, their low hydrolytic stabilities hinder their implementation in this application. So far, a few nanoporous zeolitic imidazolate frameworks (ZIFs) have shown excellent potential for butanol separation due to their good hydrolytic and thermal stabilities. Herein, we present a novel, porous, and hydrophobic MOF based on copper ions and carborane-carboxylate ligands, mCB-MOF-1, for butanol recovery. mCB-MOF-1 exhibits excellent stability when immersed in organic solvents, water at 90 °C for at least two months, and acidic and basic aqueous solutions. We found that, like ZIF-8, mCB-MOF-1 is non-porous to water (type II isotherm), but it has higher affinity for ethanol, butanol, and acetone compared to ZIF-8, as suggested by the shape of the vapor isotherms at the crucial low-pressure region. This is reflected in the separation of a realistic ABE mixture in which mCB-MOF-1 recovers butanol more efficiently compared to ZIF-8 at 333 K.</p

    Effects of sustained exercise on GH-IGFs axis in gilthead sea bream (Sparus aurata)

    No full text
    The endocrine system regulates growth mainly through the growth hormone (GH)/insulin-like growth factors (IGFs) axis and, although exercise promotes growth, little is known about its modulation of these factors. The aim of this work was to characterize the effects of 5 wk of moderate sustained swimming on the GH-IGFs axis in gilthead sea bream fingerlings. Plasma IGF-I/GH ratio and tissue gene expression of total IGF-I and three splice variants, IGF-II, three IGF binding proteins, two GH receptors, two IGF-I receptors, and the downstream molecules were analyzed. Fish under exercise (EX) grew more than control fish (CT), had a higher plasma IGF-I/GH ratio, and showed increased hepatic IGF-I expression (mainly IGF-Ia). Total IGF-I expression levels were similar in the anterior and caudal muscles; however, IGF-Ic expression increased with exercise, suggesting that this splice variant may be the most sensitive to mechanical action. Moreover, IGFBP-5b and IGF-II increased in the anterior and caudal muscles, respectively, supporting enhanced muscle growth. Furthermore, in EX fish, hepatic IGF-IRb was reduced together with both GHRs; GHR-II was also reduced in anterior muscle, while GHR-I showed higher expression in the two muscle regions, indicating tissue-dependent differences and responses to exercise. Exercise also increased gene and protein expression of target of rapamycin (TOR), suggesting enhanced muscle protein synthesis. Altogether, these data demonstrate that moderate sustained activity may be used to increase the plasma IGF-I/GH ratio and to potentiate growth in farmed gilthead sea bream, modulating the gene expression of different members of the GH-IGFs axis (i.e., IGF-Ic, IGF-II, IGFBP-5b, GHR-I, and TOR).E. J. Vélez and A. Millán-Cubillo are supported by a predoctoral fellowship from the Ministerio de Ciencia e Innovación (MICINN). This study was supported by the projects from the MICINN AGL2009-12427 and AGL2012-39768 to J. Gutiérrez, and the Xarxa de Refèrencia d’R+D+I en Aqüicultura and the SGR2009-00402 from the Generalitat de CatalunyaPeer reviewe
    corecore