553 research outputs found
Co-induced nano-structures on Si(111) surface
The interaction of cobalt atoms with silicon (111) surface has been
investigated by means of scanning tunneling microscopy (STM) and low-energy
electron diffraction (LEED). Besides the Co silicide islands, we have
successfully distinguished two inequivalent Co-induced
reconstructions on Si (111) surface. Our
high-resolution STM images provide some structural properties of the two
different derived phases. Both of the two phases
seem to form islands with single domain. The new findings will help us to
understand the early stage of Co silicide formations.Comment: 4pages 4figure
Radiant energy absorption studies for laser propulsion
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas
Funneling Spontaneous Emission into Waveguides via Epsilon-Near-Zero Metamaterials
In this work, we discuss the use of epsilon-near-zero (ENZ) metamaterials to efficiently couple light radiated by a dipolar source to an in-plane waveguide. We exploit both enhanced and directional emission provided by ENZ metamaterials to optimize the injection of light into the waveguide by tuning the metal fill factor. We show that a net increase in intensity injected into the waveguide with respect to the total power radiated by the isolated dipole can be achieved in experimentally feasible conditions. We think the proposed system may open up new opportunities for several optical applications and integrated technologies, especially for those limited by outcoupling efficiency and emission rate
Laser-heated rocket studies
CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient
Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing
Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices
Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing
Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices
Electrical conductivity modulation of crosslinked composite nanofibers based on PEO and PEDOT:PSS
The aim of this work is to investigate the development of nanofiber mats, based on intrinsically conductive polymers (ICPs), which show simultaneously a high electrical conductivity and mandatory insoluble water properties. In particular, the nanofibers, thanks to their properties such as high surface area, porosity, and their ability to offer a preferential pathway for electron flow, play a crucial role to improve the essential characteristics ensured by ICPs. The nanofiber mats are obtained by electrospinning process, starting from a polymeric solution made of polyethylene oxide (PEO) and poly(styrene sulfonate) (PEDOT:PSS). PEO is selected not only as a dopant to increase the electrical/ionic conductivity, as deeply reported in the literature, but also to ensure the proper stability of the polymeric jet, to collect a dried nanofiber mat. Moreover, in the present work, two different treatments are proposed in order to induce crosslinking between PEO chains and PEDOT:PSS, made insoluble into water which is the final sample. The first process is based on a heating treatment, conducted at 130°C under nitrogen atmosphere for 6 h, named the annealing treatment. The second treatment is provided by UV irradiation that is effective to induce a final crosslinking, when a photoinitiator, such as benzophenone, is added. Furthermore, we demonstrate that both crosslinking treatments can be used to verify the preservation of nanostructures and their good electrical conductivity after water treatment (i.e., water resistance). In particular, we confirm that the crosslinking method with UV irradiation results to being more effective than the standard annealing treatment. Indeed, we demonstrate that the processing time, required to obtain the final crosslinked nanofiber mats with a high electrical conductance, results to being smaller than the one needed during the heating treatment
- …