324 research outputs found

    A time-dependent Schr\"odinger equation for molecular core-hole dynamics

    Get PDF
    X-ray spectroscopy is an important tool for the investigation of matter. X rays primarily interact with inner-shell electrons creating core (inner-shell) holes that will decay on the time scale of attoseconds to few femtoseconds through electron relaxations involving the emission of a photon or an electron. The advent of femtosecond x-ray pulses expands x-ray spectroscopy to the time domain and will eventually allow the control of core-hole population on timescales comparable to core-vacancy lifetimes. For both cases, a theoretical approach that accounts for the x-ray interaction while the electron relaxations occur is required. Here we describe a time-dependent framework, based on solving the time-dependent Schr\"odinger equation, that is suitable for describing the induced electron and nuclear dynamics

    Coherent Control of Vibrational State Population in a Nonpolar Molecule

    Get PDF
    A coherent control scheme for the population distribution in the vibrational states of nonpolar molecules is proposed. Our theoretical analysis and results of numerical simulations for the interaction of the hydrogen molecular ion in its electronic ground state with an infrared laser pulse reveal a selective two-photon transition between the vibrational states via a coupling with the first excited dissociative state. We demonstrate that for a given temporal intensity profile the population transfer between vibrational states, or a superposition of vibrational states, can be made complete for a single chirped pulse or a train of chirped pulses, which accounts for the accumulated phase difference due to the AC Stark effect. Effects of a spatial intensity (or, focal) averaging are discussed

    Manipulation of single-photon states encoded in transverse spatial modes: possible and impossible tasks

    Get PDF
    Controlled generation and manipulation of photon states encoded in their spatial degrees of freedom is a crucial ingredient in many quantum information tasks exploiting higher-than-two dimensional encoding. Here, we prove the impossibility to arbitrarily modify dd-level state superpositions (quddits) for d>2d>2, encoded in the transverse modes of light, with optical components associated to the group of symplectic transforms (Gaussian operations). Surprisingly, we also provide an explicit construction of how non-Gaussian operations acting on mode subspaces do enable to overcome the limit d=2d=2. In addition, this set of operations realizes the full SU(3) algebra.Comment: Published in PR

    Spin and Orbital angular momentum propagation in anisotropic media: theory

    Full text link
    This paper is devoted to study the propagation of light beams carrying orbital angular momentum in optically anisotropic media. We first review some properties of homogeneous anisotropic media, and describe how the paraxial formalism is modified in order to proceed with a new approach dealing with a general setting of paraxial propagation along uniaxial inhomogeneous media. This approach is suitable for describing the space-variant-optical-axis phase plates

    Measuring two-photon orbital angular momentum entanglement

    Get PDF
    We put forward an approach to estimate the amount of bipartite spatial entanglement of down-converted photon states correlated in orbital angular momentum and the magnitude of the transverse (radial) wave vectors. Both degrees of freedom are properly considered in our framework, which only requires azimuthal local linear optical transformations and mode selection analysis with two fiber detectors. The coincidence distributions predicted by our approach give an excellent fit to the distributions measured in a recent experiment aimed to show the very high-dimensional transverse entanglement of twin photons from a down-conversion source. Our estimate for the Schmidt number is substantially lower but still confirms the presence of high-dimensional entanglement.Comment: Extended paper of a published version in PRA, with some extra appendice

    Attosecond x-ray transient absorption in condensed-matter: a core-state-resolved Bloch model

    Get PDF
    Attosecond transient absorption is an ultrafast technique that has opened the possibility to study electron dynamics in condensed matter systems at its natural timescale. The extension to the x-ray regime permits one to use this powerful technique in combination with the characteristic element specificity of x-ray spectroscopy. At these timescales, the coherent effects of the electron transport are essential and have a relevant signature on the absorption spectrum. Typically, the complex light-driven dynamics requires a theoretical modeling for shedding light on the time-dependent changes in the spectrum. Here we construct a semiconductor Bloch equation model for resolving the light-induced and core-electron dynamics simultaneously, which enables to easily disentangle the interband and intraband contributions. By using the Bloch model, we demonstrate a universal feature on attosecond x-ray transient absorption spectra that emerges from the light-induced coherent intraband dynamics. This feature is linked to previous studies of light-induced Fano resonances in atomic systemsThis project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 702565 as well as from Comunidad de Madrid through the TALENTO program with ref. 2017-T1/IND-5432. LP acknowledges support from Junta de Castilla y León (Project SA046U16) and MINECO (FIS2016-75652-P). JB acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO), through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV- 2015-0522) Fundació Cellex Barcelona and the CERCA Programme / Generalitat de Catalunya, the European Research Council for ERC Advanced Grant TRANSFORMER (788218), MINECO for Plan Nacional FIS2017-89536-P; AGAUR for 2017 SGR 1639 and Laserlab-Europe (EU-H2020 654148

    K-essential Phantom Energy: Doomsday around the Corner? Revisited

    Full text link
    We generalize some of those results reported by Gonz\'{a}lez-D\'{i}az by further tuning the parameter (β\beta) which is closely related to the canonical kinetic term in kk-essence formalism. The scale factor a(t)a(t) could be negative and decreasing within a specific range of β\beta (1/ω\equiv -1/\omega, ω\omega : the equation-of-state parameter) during the initial evolutional period.Comment: 1 Figure, 6 page
    corecore