96 research outputs found

    q-Hypergeometric solutions of q-difference equations

    Get PDF
    AbstractWe present algorithm qHyper for finding all solutions y(x) of a linear homogeneous q-difference equation, such that y(qx)=r(x)y(x) where r(x) is a rational function of x. Applications include construction of basic hypergeometric series solutions, and definite q-hypergeometric summation in closed form

    Letter graphs and geometric grid classes of permutations: characterization and recognition

    Full text link
    In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and kk-letter graphs for a fixed kk. However, constructive algorithms are available only for k=2k=2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 33-letter graphs. It is based on a structural characterization of graphs in this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author

    Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density

    Full text link
    The classical monomer-dimer model in two-dimensional lattices has been shown to belong to the \emph{``#P-complete''} class, which indicates the problem is computationally ``intractable''. We use exact computational method to investigate the number of ways to arrange dimers on m×nm \times n two-dimensional rectangular lattice strips with fixed dimer density ρ\rho. For any dimer density 0<ρ<10 < \rho < 1, we find a logarithmic correction term in the finite-size correction of the free energy per lattice site. The coefficient of the logarithmic correction term is exactly -1/2. This logarithmic correction term is explained by the newly developed asymptotic theory of Pemantle and Wilson. The sequence of the free energy of lattice strips with cylinder boundary condition converges so fast that very accurate free energy f2(ρ)f_2(\rho) for large lattices can be obtained. For example, for a half-filled lattice, f2(1/2)=0.633195588930f_2(1/2) = 0.633195588930, while f2(1/4)=0.4413453753046f_2(1/4) = 0.4413453753046 and f2(3/4)=0.64039026f_2(3/4) = 0.64039026. For ρ<0.65\rho < 0.65, f2(ρ)f_2(\rho) is accurate at least to 10 decimal digits. The function f2(ρ)f_2(\rho) reaches the maximum value f2(ρ)=0.662798972834f_2(\rho^*) = 0.662798972834 at ρ=0.6381231\rho^* = 0.6381231, with 11 correct digits. This is also the \md constant for two-dimensional rectangular lattices. The asymptotic expressions of free energy near close packing are investigated for finite and infinite lattice widths. For lattices with finite width, dependence on the parity of the lattice width is found. For infinite lattices, the data support the functional form obtained previously through series expansions.Comment: 15 pages, 5 figures, 5 table

    Three osculating walkers

    Full text link
    We consider three directed walkers on the square lattice, which move simultaneously at each tick of a clock and never cross. Their trajectories form a non-crossing configuration of walks. This configuration is said to be osculating if the walkers never share an edge, and vicious (or: non-intersecting) if they never meet. We give a closed form expression for the generating function of osculating configurations starting from prescribed points. This generating function turns out to be algebraic. We also relate the enumeration of osculating configurations with prescribed starting and ending points to the (better understood) enumeration of non-intersecting configurations. Our method is based on a step by step decomposition of osculating configurations, and on the solution of the functional equation provided by this decomposition

    Asymptotics of Selberg-like integrals: The unitary case and Newton's interpolation formula

    Full text link
    We investigate the asymptotic behavior of the Selberg-like integral 1N![0,1]Nx1pi<j(xixj)2ixia1(1xi)b1dxi \frac1{N!}\int_{[0,1]^N}x_1^p\prod_{i<j}(x_i-x_j)^2\prod_ix_i^{a-1}(1-x_i)^{b-1}dx_i, as NN\to\infty for different scalings of the parameters aa and bb with NN. Integrals of this type arise in the random matrix theory of electronic scattering in chaotic cavities supporting NN channels in the two attached leads. Making use of Newton's interpolation formula, we show that an asymptotic limit exists and we compute it explicitly

    Form Sequences to Polynomials and Back, via Operator Orderings

    Full text link
    C.M. Bender and G. V. Dunne showed that linear combinations of words qkpnqnkq^{k}p^{n}q^{n-k}, where pp and qq are subject to the relation qppq=ıqp - pq = \imath, may be expressed as a polynomial in the symbol z=12(qp+pq)z = \tfrac{1}{2}(qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided

    The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions

    Full text link
    We consider the application of the DRA method to the case of several master integrals in a given sector. We establish a connection between the homogeneous part of dimensional recurrence and maximal unitarity cuts of the corresponding integrals: a maximally cut master integral appears to be a solution of the homogeneous part of the dimensional recurrence relation. This observation allows us to make a necessary step of the DRA method, the construction of the general solution of the homogeneous equation, which, in this case, is a coupled system of difference equations.Comment: 17 pages, 2 figure

    Super congruences and Euler numbers

    Full text link
    Let p>3p>3 be a prime. We prove that k=0p1(2kk)/2k=(1)(p1)/2p2Ep3(modp3),\sum_{k=0}^{p-1}\binom{2k}{k}/2^k=(-1)^{(p-1)/2}-p^2E_{p-3} (mod p^3), k=1(p1)/2(2kk)/k=(1)(p+1)/28/3pEp3(modp2),\sum_{k=1}^{(p-1)/2}\binom{2k}{k}/k=(-1)^{(p+1)/2}8/3*pE_{p-3} (mod p^2), k=0(p1)/2(2kk)2/16k=(1)(p1)/2+p2Ep3(modp3)\sum_{k=0}^{(p-1)/2}\binom{2k}{k}^2/16^k=(-1)^{(p-1)/2}+p^2E_{p-3} (mod p^3), where E_0,E_1,E_2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2\pi^2, π2\pi^{-2} and the constant K:=k>0(k/3)/k2K:=\sum_{k>0}(k/3)/k^2 (with (-) the Jacobi symbol), two of which are k=1(10k3)8k/(k3(2kk)2(3kk))=π2/2\sum_{k=1}^\infty(10k-3)8^k/(k^3\binom{2k}{k}^2\binom{3k}{k})=\pi^2/2 and \sum_{k>0}(15k-4)(-27)^{k-1}/(k^3\binom{2k}{k}^2\binom{3k}k)=K.$
    corecore