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Abstract 

We present algorithm qHyper for finding all solutions y(x)  of a linear homogeneous 
q-difference equation, such that y(qx)= r(x)y(x)  where r(x) is a rational function ofx. Applica- 
tions include construction of basic hypergeometric series solutions, and definite q-hypergeometric 
summation in closed form. 

1. Introduction 

As a motivating example, consider the following second-order q-difference equation 

Yn+2 - (1 + q)X yn+l + X2 yn = 0  (1) 

where x = qn. This is a homogeneous linear equation with coefficients which are poly- 

nomials in x. It is easy to check that 

y(nU=q(~) and y~n2)=q( "2)-n 

both solve (1). Note that their consecutive-term ratios, 0 ) - O )  Yn+]/Yn = q  n = x  and 

y ~ ] / y ~ n Z ) = q n - ] = x / q ,  are rational functions of x. We call such solutions 

q-hypergeometrie.  This paper describes an algorithm for finding all q-hypergeometric 

solutions of linear q-difference equations with polynomial coefficients, and presents 

some of its applications. 

The algebraic framework that we use is the following. Let U: be a computable field 

of characteristic zero, q E I: a nonzero element which is not a root of unity, and x 
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transcendental over IF. Denote by e the unique automorphism of IF(x) which fixes IF 
and satisfies ex=qx.  Then IF(x) together with the q-shift operator e is a difference 
field [7]. 

Let p be a nonnegative integer and Pi E IF(X), for i = 0, 1 . . . .  ,p, rational functions 
such that pp, Po # O. Then 

p 
L = ~ pie i (2) 

i=0 

is a linear q-difference operator of order p with rational coefficients. Two such oper- 
ators may be multiplied by using the commutation relation 

g x = q x ~  

and extending it by distributivity. Division of operators can be performed using the 
rule 

f ( x ) e k =  ( f ( x )  ) 9(qk_mx) ek-m 9(x)e m 

for right-dividing a monomial f ( x )  e k by another monomial 9(x) em (m <~k). As with 

ordinary polynomials, for any two operators Ll, L2 where L2 ~ 0, there are operators 
Q and R such that L1 =QL2 + R  and ordR<ordL2.  Thus one can compute greatest 
common right divisors (and also least common left multiples, see [6]) of  q-difference 
operators by the right-Euclidean algorithm. 

We are interested in nonzero solutions y of  the homogeneous equation 

L y = O  (3) 

where L is as in (2). In general such solutions cannot be found within the coefficient 

field IF(x). Rather, we look for them in some difference extension tin9 M of IF(x). Thus 
the problem of finding q-hypergeometric solutions of  a q-difference equation contains 
two 'parameters': the ground field IF, and the difference extension ring M. 

We call an element a E M  polynomial 1 if aCiF[x], rational I if  aEiF(x), and a 
q-hyperqeometric term if  a y~ 0 and ea = ra for some r c IF(x). Note that q-hypergeo- 
metric terms form a multiplicative group. 

Let y E M  with ey =ry.  Then it is easy to see that y is a q-hypergeometric solution 
of (3) if and only if LI = e - rI (where i is the identity operator) is a right divisor 
of  L. This splits the search for q-hypergeometric solutions of  (3) into two steps: 1. 
find first-order right divisors L1 of L (the nontrivial part), 2. solve the corresponding 
first-order equations L l y = O  in M. Note that step 1 does not depend on the choice 
of M. 

The overview of the paper is as follows. An algorithm qHyper for finding first-order 
right divisors of  linear q-difference operators with rational coefficients is presented in 

l All these concepts are relative to the field U-. 
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Section 4. It is a q-analogue of algorithm Hyper for finding hypergeometric solu- 
tions of  difference equations described in [13]. Note that by clearing denominators 
in (3) we can restrict attention to operators L with polynomial coefficients Pi C Be[X]. 
In preparation, we show how to find polynomial solutions of  (3) in Section 2, and give 
a suitable normal form for rational functions in Section 3. In Section 5, we discuss 
solutions of the first-order equation ey = ry in two specific instances of  the extension 
ring M: the ring of germs of sequences over 0:, and the ring of formal power series 
over 0:. In Section 6 we show how to solve nonhomogeneous equations Ly = f with 
q-hypergeometric right-hand side f .  In Section 7, we describe applications of  qHyper 
to the problem of closed-form evaluation of definite q-hypergeometric sums. 

In our examples, we use the following q-calculus notation. Let ( z ;q )n=  
( 1 -  z ) ( l -  z q ) . . . ( 1 -  zq ~-~) for n~>l and ( z ; q ) 0 = l  be the q-shifted factorials, 
and ( z ;q )~  = I ~ k ~ 0 ( 1 -  zq k) the corresponding infinite product. For integer m let 
[m] = (1 - qm)/(1 - q). Note that -qm[-m] = [m] = 1 + q + . . .  + q,n-1 for m >~ 1. Thus 

[m] turns into m as q ~ 1. The same applies to [m]d defined as [m] with q replaced 
by qd, d a positive integer. Let [ m ] ! = [ 1 ] [ 2 ] - . . . .  [m] for m~>l and [0] !=1.  For 
integer n and nonnegative integer k, the Gaussian polynomial or the q-binomial co- 
efficient is defined as 

These definitions are introduced to make the analogy with the case q--~ 1 more trans- 
parent. For instance, when q--+ 1 the q-factorial [m]! turns into the ordinary factorial 
m!, and the q-binomial coefficient [7,] turns into the ordinary binomial coefficient (~). 
Again [re]d! and [~]d denote the corresponding versions with q replaced by qd. The 
q-shifted factorials relate to the Gaussian polynomials via 

(z;q) ,  = Z ( - 1 )  k q(~)z k, (4) 

k=0 

a q-analogue of the binomial theorem. 
We use ~d to denote the set of  nonnegative integers. 
Sometimes we need to find the largest n E N (if any) such that q" is a root of  a 

given polynomial with coefficients in U z. Therefore we assume that I z is a q-suitable 
field, meaning that there exists an algorithm which given p E DZ[x] finds all n c ~ such 
that p(qn)=o.  Since by assumption q is neither a root of  unity nor zero, the set of  
all such n is finite. 

Example 1. Let ~ be any computable field. Then D z = ~ (q )  where q is transcendental 
over ~ is q-suitable, as shown by the following algorithm: Let p(x )= ~ai= o cix i where 
ci C ~([q]. Compute s = min{i; c i ~ 0} and t---- max{j ;  qJ los}. Then p(qn) = 0 only 
if n ~< t, and the set of  all such n can be found by consecutively testing the values 
n = t , t - 1 , . . . , O .  
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It is easy to see that i f  U: is a q-suitable field and ~ is either transcendental or 
algebraic over U:, then the extension U:(~) is also q-suitable. 

2. Polynomial solutions 

First we show how to find solutions y E  g:[x] o f L y =  0 where L is as in (2) but with 
d k n 

Pi  E []:[X]. Let Pi----- ~ k = 0  CikX where not all Cid are zero. Assume that y = ~ j = o  ajxJ 
where an ~ O. Substituting these expressions into L y - - 0  and replacing k by l = j  + k 
yields 

Ci, l _ j a j q i J x  l = 0 
i,l+j 

which implies that 

min{l,n} p 
~-~ci, l_]ajqiJ = o  for O<<.l<<.n + d. (5) 

j=max{t--d,O} i=O 

In particular, for l = n + d, 

p 
Cidq in : 0, ( 6 )  

i=0 

and for l = 0, 

p 

ao ~ Cio = O. (7) 
i=0 

From (6) it follows that qn is a root o f  the polynomial p ( x ) =  Y'~+/P=0 CidXi" Let no be 
the largest n E ~ such that p(qn)=  0. Since F is q-suitable there is an algorithm to 
compute no. All polynomial solutions y of  Ly = 0 can now be found by the method 
of  undetermined coefficients. Ultimately, the problem is reduced to a system of  linear 
algebraic equations over D: with no + 1 unknowns. A more efficient method leading to 
a system with at most p unknowns is described in [2]. 

3. A normal form for rational functions 

Theorem 1. Let r E [/:(x)\{O}. Then there are z E ~- and monic polynomials a, b, c E U:[x] 
such that 

r(x) a(x) c(qx) (8) 
= Z  b (x )  c ( x )  ' 

gcd(a(x),  b(qnx)) = 1 for  all n E [~, (9) 

gcd(a(x),  c(x)) = 1, (10) 
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gcd(b(x), e(qx)) = 1, (11) 

c(0) # 0. (12) 

Proof. Write r ( x ) =  f ( x ) / 9 ( x )  where f ,  g are relatively prime polynomials. We start by 
finding the set 5 e of all n E N such that f ( x )  and g(qnx) have a nonconstant common 
factor. To this end consider the polynomial R(w)=Resu l tan tx ( f (x ) ,g (wx) ) .  By the 
well-known properties of  polynomial resultants, 6 e = {n E N; R(q n) = 0}. 

Assume that 50=  {nl,rt2,...,nt} where t>~0 and nl <n2 < . . .  <nt.  In addition, let 
nt+l = -F- CX3. Define polynomials y] and gi inductively by setting 

fo(x)  = f ( x ) ,  go(x) = g(x), 

and for i = 1,2 . . . . .  t, 

Si(X) = g c d ( J ~ _ l ( X ) ,  gi-l(qnix) ), 

f i(x) = fi-l(x)/si(x),  

gi(x) = gi_l(X)/Si(q-nix). 

Now take 

t ni 
z = ~z/fl, a(x) = f t(x)/~,  b(x) = gt(x)/fl, c(x) = l-I ]-I si(q-gx), 

i=1 j= l  

where ~ and // denote the leading coefficients of  f t (x)  and gt(x), respectively. Before 
proving (8 ) - (12)  we state a lemma. 

Lemma 1. Let  n E ~. I f  0 <~ l <.% i, j <~ t and n < nt+l, then gcd(fi(x),  gj(qnx)) = 1. 

Proof. Assume first that n ~ 5 a. Then R(q n) • 0, hence gcd( f (x ) ,  g(qnx)) = 1. Since 
f i ( x ) l f ( x  ) and gj(x)[g(x) it follows that gcd( f i (x ) ,g j (qnx) )= 1, too. 

To prove the lemma for n E 5e we use induction on l. 

l---0: In this case there is nothing to prove since there is no n E 6 e such that n<nl .  
l > 0 :  Assume that the lemma holds for all n <nl .  It remains to show that it also 

holds for n = nl. Since f i ( x ) [ f t ( x )  and 9j(x) lgl(X), it follows that gcd(f i(x) ,gj(qn'x))  
divides gcd(fl(x),  gl(qntx)) = gcd( f t_  1 (X)/SI(X),  gl-1 (qn'x)/sl(x)). By the definition of 
st(x) the latter gcd is 1, completing the proof. [] 

Now we proceed to verify properties (8)- (12) .  
(8) 

a(x) c(qx) 
b(x) c(x) 

_ _  = f t (x )  I - I  ffX Si(ql-Jx) 
g t ( x )  i=1 j= l  si(q-Jx) 

fo(X) 111=1 si(q -nix) 

FII=~ ~(~) go(x) ~=~ 1 1  
si(x) __ f ( x )  

si(q-nix) g(x~ = r(x). 
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(9) Let i = j  = l = t in Lemma 1. Then gcd( f t (x ) ,g t (qnx) )  = 1 for all n <nt+l = +oe. 
In other words, gcd(a(x), b(qnx)) = 1 for all n E ~.  

(10) I f  a(x) and c(x) have a nonconstant common factor then so do f t (x)  and 
si(q-Jx),  for some i and j such that l<.i<~t and l<,j<~ni. Since gi_ l (qn:-Jx)= 
gi(qn~-Jx)si(q-Jx), it follows that gi-1 (q n~-jx) contains this factor as well. As ni-- j < ni, 

this contradicts Lemma 1. Hence a(x) and c(x) are relatively prime. 

(11) I f  b(x) and c(qx) have a nonconstant common factor then so do gt(x) and 
si(q-Jx),  for some i and j such that 1 <~i<<.t and 1 ~<j + 1 <~ni. Since f i _ l ( q - J x )  = 
f i (q-Jx)s i (q-Jx) ,  it follows that f . - l ( x )  and gt(qJx) contain this factor as well. As 

j<ni ,  this contradicts Lemma 1. Hence b(x) and c(qx) are relatively prime. 

(12) It is easy to see that si(x) divides both f ( x )  and g(q"~x). Hence si(O)= 0 would 

imply that f ( 0 )  = g(0) = 0, contrary to the assumption that f and g are relatively prime. 
It follows that s i ( 0 ) ¢  0 for all i, and consequently c ( 0 ) ¢  0. [] 

Example 2. Let 

r(x) = 
(x - 1 )(q3x - 1 ) 

(qx - 1 )(q4x - 1 )" 

Rewriting this as 

1 x - 1  
r(x)---q4 x - q - 4  

we can read off 

z --- q-4,  

(qx -- q--2 )(qx -- q-- l ) 

(x - q-2 )(x - q-1 ) 

a(x) = x  - 1, b(x) : x  - q-4,  c(x) = (x -- q-2 )(x -- q - l  ). 

The representation described in Theorem 1 is unique and thus a normal form. In 

addition, it has c(x) of  least degree among all factorizations o f  r(x) satisfying (8) and 
(9). A proof o f  this can be found in [3]. 

Remark.  The factorization o f  Theorem 1 satisfying (8) and (9) is used by 

Koomwinder [9] in his Maple implementation o f  a q-analogue of  Zeilberger's algo- 

rithm. In a similar context this representation is discussed by Paule and Strehl in [12] 
where a different normalization has been chosen. 

4. q-Hypergeometric solutions 

Now we derive the algorithm for finding first-order right divisors o f  linear 

q-difference operators with polynomial coefficients. Any such divisor has a non-trivial 

kernel in some suitable difference extension ring M (see, e.g., Section 5.1), there- 
fore it is permissible to think rather in terms of  finding q-hypergeometric solutions 
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y of  Ly = 0. Let ey = ry where r • I:(x), then eiy = l--[~.-1o r(qJx)y. We look for r(x) 
in the normal form described in Theorem 1. After inserting (8) into Ly = 0, clearing 

denominators and cancelling y we obtain 

P 
zifi(x)c(qix) = 0 (13) 

i=0 

where 

i--1 p--1 

f i ( x )  = p i ( x )  I~ a(q  j x )  ~ I  b (qJx )  • 
j = 0  j=i 

Since all terms in (13) except for i = 0 are divisible by a(x) it follows that a(x) divides 

po(x)c(x)I]]-  ~ b(qJx). Because of  (9) and (10), a(x) divides po(x). Similarly, all 
terms in (13) except for i = p  are divisible by b(qP-lx), therefore b(qP-lx) divides 

ZPpp(X)c(qPx)l-I~sga(qJx). Because of  (9) and (11), b(qP-~x) divides pp(X). Thus 

we have a finite number o f  choices for a(x) and b(x). 
For each choice o f  a(x) and b(x), Eq. (13) is a q-difference equation for the unknown 

polynomial c(x). However, z C I z is also not known yet. Let uik denote the coefficient 
o f x  k in ~ .  Since c ( 0 ) ¢ 0 ,  we have a 0 ¢ 0  in (7), hence applying (7) to (13) we 

obtain 

P 
uioz i = 0. (14) 

i=0 

We may assume that not all uio are zero, or else we start by first cancelling a power 

o f x  from the coefficients o f  (13). Thus z is a nonzero root o f  f ( z ) =  ~/P=0 uiozi, and 
is algebraic over I z. 

I f  n = degc(x)  then by (6), 

P 
Uidf  q m = 0,  (15) 

i=0 

x~p u w i It follows that qn is a r o o t  o f  hence w =zq = is a nonzero root o f  g(w)---- /---,/=0 id • 

p(x)=Resultantw(f(w),g(wx)),  thus to obtain an upper bound on n computation in 

algebraic extensions of  I: is not necessary. 

In summary, we find the factors o f  r(x) as follows: 
1. a(x) is a monic factor of  p0(x), 
2. b(x) is a monic factor o f  pp(ql-px), 
3. z is a root of  Eq. (14), 

4. c(x) is a nonzero polynomial solution o f  (13). 
Then r =z(a/b)(~c/c), and the nonzero y E M satisfying ey = ry are q-hypergeometric 

solutions of  Ly = 0. Conversely, for any q-hypergeometric solution y o f  Ly = 0, its 
consecutive-term ratio r = ey/y can be obtained in this way. Our algorithm called 

qI-Iyper works by finding, for each admissible triple (a(x), b(x),z), a basis of  polyno- 

mial solutions of  the corresponding equation (13). 
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Alternatively, after finding one q-hypergeometric solution u with eu/u = r, we can 

divide L by L~ = e -  rI to obtain L =L2LI,  and use the algorithm recursively on the 

reduced equation L2z = 0. I f  z solves the new equation then any solution y o f  the 

nonhomogeneous first-order equation 

e y - r y = z  (16) 

solves the original equation. To solve (16), we can use the algorithm o f  Section 6. 

Instead, we can also make the substitution y = uv, and use either the q-analogue o f  

Gosper 's  algorithm, or again the algorithm of  Section 6, on the resulting equation 

e v -  v = z / ( r u ) .  This process is equivalent to the standard method o f  reduction o f  

order. 
Our Mathematica implementation 2 o f  qHyper  finds, in its basic form, at least one 

q-hypergeometric solution over Q(q)  ( if  any such exists). With the option S o l u t i o n s  

->  Al l ,  it finds a generating set for the space spanned by q-hypergeometric solutions 

over Q(q),  and with the option Q u a d r a t i c s  -> True,  it works over quadratic exten- 

sion fields of  Q(q). It returns a list o f  rational functions rl, r2 . . . .  , rk which represent 

solutions Yl, Y2 . . . . .  Yk such that ri = ~Yi /Yi .  

Example 3. Let us find a first-order right divisor o f  

L =xe  3 - q3x2e 2 - (x 2 + q)~ + qx(x 2 + q)L 

The candidates for a(x) are 

1,X,X 2 + q,x(x  2 + q), 

and the candidates for b(x) are 

1,x. 

Here we explore only the choice a ( x ) = x  and b ( x ) =  1. The corresponding equation 

(13) is, after cancelling one x, 

z3q3x3c (q3x )  -- z 2 q 4 x 3 c ( q 2 x )  -- Z(X 2 + q)c(qx)  + q(x 2 + q)c(x)  = O, (17) 

whence f ( z )  = - qz + q2 with unique root z = q, and g(w)  = q3w3 - q4w2 with unique 

nonzero root w = q = z q  n =  qn+l. It follows that n = 0 is the only possible degree for c. 

Eq. (17) is satisfied by c =  1. Thus we have found r = z ( a / b ) ( e c / c ) = q x ,  and the cor- 

responding right divisor LI = e - qx of  L. 
To find other first-order right divisors, the remaining combinations for a(x)  and b(x)  

could be tried. Using our Mathematica implementation to carry this out, it turns out 

2 A v a i l a b l e  ~ ftp://~.ijp.s±/pub/math/qHyper.m. 
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that there are in fact no other such divisors: 

I n [ l ] : =  q H y p e r [ x  y [ q ^ 3  x] - q ' 3  x^2 y [ q ^ 2  x] - (x^2  + q) y [ q  x] + 

q x ( x ' 2  + q) y [ x ]  == 0,  y [ x ] ,  

Solutions -> All, Quadratics -> True] 

Out [I]= {q x} 

Example  4. Consider the operator L = e 2 - ( 1  + q ) e + q ( 1  - q x 2 ) I .  As shown by qHyper ,  

I n [ 2 ] : =  q H y p e r [ y [ q ^ 2  x] - (1 + q) y [ q  x] + q (1 - q x^2)  y [ x ]  == 0,  

y[x], Solutions -> All] 

Warning: irreducible factors of degree > I in trailing 
coefficient; some solutions may not be found 

Out [ 2 ]  = {} 

it has no first-order fight divisors over F = Q(q) .  However,  al lowing quadratic factors 

to be split, 

I n [ 3 ] : =  q H y p e r [ y [ q ^ 2  x] - (1 + q) y [ q  x] + q (1 - q x^2)  y [ x ]  == 0,  

y[x], Solutions -> All, Quadratics -> True] 

Out[S]= {i - Sqrt[q] x, I + Sqrt[q] x} 

we obtain two such divisors, namely e - (1 ± x /qx) ,  over the splitting field F = ~ ( x / q )  
o f  1 - qx 2. 

Example  5. The operator L = e 2 - ( 1  + 2x)e + x I  has no first-order fight divisors over 

F = O(q) :  

I n [ 4 ] : =  q H y p e r [ y [ q ^ 2  x] - (1 + 2 x)  y [ q  x] + x y [ x ] ,  y [ x ] ]  

Out [4] = {} 

Here q was considered transcendental over the rational number field ~ .  But when q----2 

In [5]:= q -- 2; 

In[6] := qHyper[y[q^2 x] - (I + 2 x) y[q x] + x y[x], y[x]] 

Out [6] = {x} 

we do get one such divisor over F - - ~ ,  namely e -  x. 

In [7] : = Clear [q] 
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5. Examples of specific extension rings 

5.1. Germs o f  sequences over I z 

Let F ~ be the ring o f  sequences over ~z, where addition and multiplication 
/ /7)oo ( 'Hadamard product ' )  are defined componentwise. Let x = (q n = 0 denote the sequence 

o f  powers o f  q. I f  E denotes the shift operator on 0 z~, i.e., Ean = an+l, then Ex = qx. 

Since 2 E ~: can be identified with the constant sequence (2,2 . . . .  ), we can regard F, 
UZ[x] and 0Z(x) as subrings o f  0 z~. 

Unfortunately, E is not an automorphism of  F ~ because it annihilates nonzero se- 

quences o f  the form (2, 0, 0 . . . .  ). To remedy this situation, we identify such sequences 

with zero; moreover, we identify any two sequences which agree from some point 
on. Formally we define M as the quotient ring S(~z)= 0zn/J where J is the ideal o f  

sequences with only finitely many nonzero terms. In particular, this means that equal- 

ities o f  the form an = bn are interpreted as being valid for all but finitely many n (in 
short: for almost all n). Define e on S(0 z) by requiring that ~(a + J ) = E a  + J  for all 

a c D zN. Then e is an automorphism of  S(0z), and S(F) is a difference extension ring o f  

0Z(x). The elements o f  S(U z) are called the germs o f  sequences over O z [15]. To simplify 

notation, we will identify the germ a + J  c S(F)  with its representative sequence a E I zN. 

In this domain the q-difference equation L y  = 0 where y = (yn)n~_0 E S(Uz), translates 

into 

P 
Pi(q n)yn+i = 0 

i=0  

for almost all n. In particular, the first-order equation ey = r y  where r C DZ(x) can be 

rewritten as 

Y,+I = r ( q " ) y , .  (18) 

Let no be the largest n E N such that qn is a pole o f  r, or - 1  if  no such n exists. 

Then, clearly, the sequence 

n- - I  

Yn = C  I-I r(q ~) for n > n o ,  (19) 
k=no+ 1 

where C c 0 z is an arbitrary constant, satisfies (18) for almost all n. Thus every homo- 

geneous first-order equation has a one-dimensional space o f  q-hypergeometric solutions 

in S(F). 

I f  r(x)  factors into linear factors over F: 

(x - ~1 )(x - ~ 2 ) " "  (x - ~r) u 
F(X)=Z(x fll)(X f12) ~ - ~ X  
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where z, ~i, flj ¢ I z, u ¢ Z, and ~i, flj ~ 0, qk, for all k E ~,  then we can also express the 
solution with q-shifted factorials as 

Yn = C (1/~1; q)n(1/~2; q)n "'" (1/~r; q) ,  qU(:) W" 
(1/fl,; q ) , ( l ~ 2 ;  q ~ .  ~( 1--~=; ~,,, 

where 

~ 1 ~ 2  ' " ' ~ r  (--1)r+SZ/~l/~2../~s' W 

and C E I z is an arbitrary constant. This is the reason why q-hypergeometric solutions 
are considered to be expressible in closed form. 

Example 6. Let L be the linear q-difference operator of  Example 3. Then the 
q-hypergeometric solutions y E S ( I : )  of  L y = 0  satisfy Yn+l =qn+ly~. Hence 

y= = q("~') 

is a q-hypergeometric solution of  Ly = 0 in S(IZ), that is, 

qnyn+ 3 -- q2n+3yn+ 2 -- q(1 + q2n--1 )Yn+l + qn+2(1 + q2n--I )Yn -~ 0 

for n>~0. 
Let L be the linear q-difference operator of  Example 4. Then the q-hypergeometric 

solutions y E S(I z) of  L y = 0 satisfy y=+l = (1 ± q n+l/2) Yn. Hence y(l) = (x/~; q) ,  and 

y~Z) = ( _ v / ~ ; q ) =  are two linearly independent q-hypergeometric solutions of  L y = O  
in S(I:). 

Let L be the linear q-difference operator of  Example 5, and let q = 2. Then the 
2-hypergeometric solutions y ¢ S(I z) of  L y = O  satisfy Y=+l =2ny .  Hence 

y ,  = 2(~) 

is a 2-hypergeometric solution of  Ly  = 0 in S(I:). 

5.2. Formal power series over I: 

Let M = IZEx ], the ring of  formal power series over I z. Note that I:, lZ[x], and IZ(x) 
O G  are embedded in M in a natural way. For y(x)  = ~k=0 Yk xk ¢ l:Ix~, define 

s ~ ykxk= ~ ykqkx k. 
k = 0  k = 0  

Then e is an automorphism of  lZlx~, and I:~x] is a difference extension ring of  I:(x). Un- 
like in S(IZ), a homogeneous first-order q-difference equation with rational coefficients 
does not always have a nonzero solution in I:~x]. 

Theorem 2. The equation y ( q x ) =  r (x )y (x )  where r ( x ) =  ~-~=o rkxk C IZlxl has a non- 
zero solution y(x)  E l:Ix ] i f  and only i f  ro = q" for  some n E ~. 
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oo k Proof.  Let y(x) = )--~k=0 ykx be a solution o f  y(qx) = r(x)y(x). Then, comparing co- 

efficients o f  like powers o f  x, we have 

k 

qkyk = ~ Yirk_i for k = 0, 1 . . . . .  
i=0  

or, equivalently, 

k-- I  

yk(q k - r o ) =  ~ yirk-i for k = 0, 1 . . . . .  (20) 
i=0  

Assume first that r0 # qk for all k E t~. Then (20) implies that 

Yo = O, 
k - 1  

Yk = ~ yirk-i/(q k -- to)  
i=0  

for k = l , 2  . . . . .  

From this it follows by induction on k that yk = 0 for all k E ~ ,  hence that y(x)= O. 
Now let r0 = qn for some n E t~. Then we see as above that Yk = 0 for k < n, and 

k - I  

y k = ~ y i r k _ i / ( q k _ q n )  f o r k = n + l , n + 2  . . . . .  (21) 
i=n 

which is a recurrence allowing us to express all Yk with k > n in terms o f  Yn. [] 

Example 7. In Examples 3 and 5 we have r(x)=qx and r(x)=x,  respectively. 

In both cases r0 = 0, so the condition o f  Theorem 2 is not fulfilled. Hence the corre- 

sponding equations have no q-hypergeometric solutions in ~:lx]. 

In Example 4, r(x)= 1 + v/~x, and the condition o f  Theorem 2 is fulfilled with 
n = 0. Using recurrence (21) we find two linearly independent q-hypergeometric solu- 

tions in U:lx]: 

y(l)(x) = ~ ( -  1 )kqk/2 
k=0 (q;q)k xk' 

qk/2 
- -  X k" Y(E)(x) = (q; q)k 

k=O 

Both solutions are instances o f  a q-analogue of  the exponential function e z, namely 
c~ n eq(Z) = ~n=O z /(q; q)n = 1/(z; q)oo [8, Eq. (1.3.15)]. This classical product expansion 

allows an easy verification o f  the statement above. 

We remark that Laurent series solutions can be handled in an analogous way. 

In that case, Theorem 2 still holds, provided that n is allowed to be any integer. 
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5.3. Basic hypergeometric series 

The algorithm qHyper allows us also to find power series solutions in M----D:lx] 

whose coefficients form a q-hypergeometric sequence in S(U:). I f  y(x)  = ~ - - o  yjxJ is 

such a series then Yj+t =r(qJ)yj  for some r(x)C Y(x) and for almost all j E ~d. These 

series are usually called basic hypergeometric series [8]. 
O~ 

Let Ly(x )=  b(x) where b(x )=  )-~j=0 bjxJ. As in (5), we obtain 

l p 
~Ci,  l_jyjqiJ=bt for l~>0. (22) 

j=max{l--d,O} i=0 

We separate the cases O<~l<d and l>~d. In the former case, (22) yields initial con- 

ditions 

1 p 
yj ~ ci, l- jq ij = bl for 0 ~< l < d, (23) 

j = 0  i=0 

while in the latter, substitutions m = l - d, s = j  - m, and X = q" transform (22) into 

the associated q-difference equation 

d p 
Ym+s ~ Ci,d-sq isxi = b~n+d for m/>0, (24) 

s=0 i=0 

for the unknown sequence (Ym)m°°=o . 
I f  b(x )= 0 we use ql-Iyper on (24). Among the obtained solutions, we select those 

which are defined for all m 6 [~, and satisfy initial conditions (23). I f  b ( x ) ~  O, we use 

the algorithm of  Section 6 instead. 

Example 8. Let us find basic hypergeometric solutions y(x)  of  

q2x2e3y + (1 + q)xe,2y + (1 -- x)ey -- y = 0. (25) 

The associated equation (24) in this case is 

(qEX - 1)ym+2 + (qE(q + 1).3(2 _ qX)ym+l + q2X3ym = 0  (26) 

and qI-Iyper finds two solutions: 

I n [ 8 ]  := qI-Iyper[(q^2 X - 1) y [ q ' 2  X]+(q^2 (1 + q) X^2 - q X) y [ q  X]+ 

q^2 X^3 y[X] = = O, y[X], Solutions -> All] 

X 2 Out Is] = {-x, ~} 

Thus the general solution o f  (26) in S(I:) is 

Ym -~ C ( -  1 )mq ('2') q- Oqm2/(q; q)m 
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where C and D are arbitrary constants. Eqs. (23) imply that C = 0 .  Hence y ( x ) =  
oo m 2 m . 

~m=oq x /(q,q)m is a basic hypergeometric solution of (25). 
Note that running qI-Iyper on Eq. (25) itself we obtain r(x) = - 1Ix which does not 

belong to Fix ~. Hence (25) has no q-hypergeometric solution in 0:Ix ~. 

6. Nonhomogeneous equations 

Consider the problem of  finding q-hypergeometric solutions y c M of  the nonhomo- 
geneous equation Ly = b where b c M\{0}.  Let ~y = ry  where r C F(x). Then Ly = f y  
where f ~-~f:0 i-1 . = Pi I~j=0 e Jr is a rational function of  x. This simple fact has two im- 
portant consequences: 

1. b = f y is q-hypergeometric, 
2. y = b / f  is a rational multiple of b. 

Let eb = sb where s E F(x) is given. We look for y in the form y = f b  where f C F(x) 
is an unknown rational function. Substituting this into Ly  = b gives 

p i - - 1  X . 

p, 
i=0 

Now rational solutions of this equation can be found using the algorithm given in [1]. 

Example 9. Let y ( x ) E  Fix ] satisfy 

J y ( x )  - (1 - qx)ey(x)  + q y ( x ) =  b(x) (27) 

where 

c~ x i  

b(x) : E (q;--q), 
i = 0  

Here b(qx)= (1-x)b(x) ,  as can easily be verified. Thus s ( x ) =  1 - x  and y ( x ) = f ( x ) b ( x )  

where f ( x )  satisfies 

(1 - qx)(1 - x ) 8 2 f ( x )  - (1 - qx)(1 - x ) ~ f ( x )  + q f ( x ) =  1 

with rational solution f ( x ) =  1/q. Hence y ( x ) =  b(x)/q is a q-hypergeometric solution 
of  (27) in F~x 1. As in Example 7 the result is easily verified by using the product 
representation of the q-exponential function eq(X)= b(x). 

We can also look for basic hypergeometric solutions of  (27). The associated non- 
homogeneous equation for Ym is by (26) 

1 
( q X  2 - x + 1)ym+~ + X y m  

q(q; q)m+l ' 
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and we find its q-hypergeometric solutions in S(IZ). Here s (X )=(q (q ;q )m+l ) / (q (q ;  
q)m+2)  = 1/(1 - q m + 2 ) =  1/(1 - q2X), and the equation for f ( X )  

1 - X ÷ q X  2 
1 - q2X e f ( X )  + X f ( X ) =  1 

is satisfied by the rational function f ( X )  = 1 - q X .  Thus Ym = ( 1 - q X ) / ( q ( q ;  q)m+l ) = 1/ 
(q(q;q)m), and we find the same solution y ( x ) = b ( x ) / q  as before. 

The algorithm for finding q-hypergeometric solutions o f  nonhomogeneous equations 

can also be used to solve the problem of  indefinite q-hypergeometric summation: Given 
- -  O G  a q-hypergeometric sequence b -  (bn)n =0 over I:, decide if  the telescoping recurrence 

y,+l  - Y n  = bn has a q-hypergeometric sequence solution (y,)=~_ 0. I f  so, the indefinite 

o f  b can be expressed in closed form, namely, }-~:o 1 b j :  y , -  To. Since s u m  w e  

are interested in q-hypergeometric solutions, we rewrite the telescoping recurrence as 

ey - y = b and use the algorithm of  this section to find solutions y E S(IZ). 

Example 10. To evaluate the sum ~ = ~  bj where b, : qn(q; q)n, w e  look for q-hyper- 

geometric solutions y of  the nonhomogeneous equation 

ey - y = b. (28) 

Here s = ~b/b = q(1 - q x ) ,  and f satisfies the equation 

q(1 - qx )~ f  - f : 1 

which has a unique rational solution f = - 1/(qx). Hence Yn = - b n / q  n+l satisfies 

(28), and ~-~=-~ bj = y,  - Y0 = (1 - (q; q)=)/q. 

7. Applications to q-hypergeometric summation 

It is well known that Zeilberger's 'fast '  algorithm [18], or the more general WZ- 

machinery described in [17], does not always deliver a representing difference equation 

of  minimal order for the given sum. For instance, as pointed out in [11] one can prove 

that the Zeilberger recurrence for the sum expression on the left-hand side o f  

~-~' ( -  1) k = ( - d )  n 
k=0 

(29) 

for a fixed positive integer d is o f  order d - 1 instead o f  order 1 according to its 

hypergeometric evaluation. Here one applies algorithm I-Iyper of  [13] to the recurrence 

in order to find its hypergeometric solutions. In this section a brief discussion of  

applications o f  qI-Iyper in connection with definite q-hypergeometric summation is 

given. 
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7.1. A new q-summation identity 

Let d and n be positive integers, then 

Z ( -  1)kqd("Tk) kn _-- ( -  1 ) "q(d-l)(g)[n]d!r''n[n]! [a/ , 
k=0 d 

(30) 

which for q ~ 1 specializes to identity (29). The proof of (30), an identity we could 
not find in the literature, is elementary by using 

~--~(_l)kqa(,,Tk) n 0, i f 0~< l~<n-  1, 

qa("~)(qa;qa)n, if l = n  k=0 d 

which follows immediately from (4), and by observing that [ank ] is 1/(q;q)n times a 
polynomial in qak of degree n. 

Denote by SUM(n) the sum expression on the left-hand side of (30). Applying the 
q-analogue qZe i l  of Zeilberger's algorithm implemented in Mathematica by Riese [14] 
one obtains, for instance, for d = 3 a recursion of order 2. This means, as in the case 
q--~ 1, that the minimal order is missed by 1: 

In [9] : = qZeil [ (-i) "kq ̂ (3 Binomial [n-k, 2] ) qBinomial [n, k, q^ 3] * 

qBinomial[3k,n,q], {k,-Infinity,Infinity}, n, 2] 

Out[9]=SUM[n]==(q-S + 4n(_ 1 + q-I + n)( 1 + q-i + n+ q-2 + 2n) 

>(i + qn+ q2n)SUM[_ 2 + n]) / ((i + qn)(l - q-i + 2n)) + 

>(q-2 + 2n(1 + qn+ q2n)(-1 - q + q-1 + 2n+ q-1 + 3n) 

>SUM[-1 + n]) / ((I + qn) (i - q-1 + 2n)) 

The algorithm qHyper now finds the q-hypergeometdc solution of this recurrence (after 

replacing qn by x, and SUM [n+k] by Y [q^k x] ): 

In[lO]:=~ /.{SUM[n + k_.] -> Y[q^k x], 

q^(a_, n + b_.) -> x^a q'b}; 

In[ll]:= qHyper[Y,, Y[x]] 

Warning: irreducible factors of degree >i in leading 

coefficient; some solutions may not be found 
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Warning: irreducible factors of degree >I in trailing 

coefficient; some solutions may not be found 

Out [ll] ={- (x2 ( l + qx + q2 x2))} 

This means that for one solution Yn = y(qn),  we have 

Yn+l __ q2n(l + qn+l + q2n+2) = __ q2n I -- q3n+3 

Yn 1 - - q - ~  " 

From this information together with the initial values one computes as the q-hypergeo- 
metric evaluation of the sum the expression on the right-hand side of (30) for d = 3. 

7.2. Increased orders 

In most instances the orders of the Zeilberger recurrences for q-analogues and their 
q ~ 1 specializations are the same. This also applies when Zeilberger's algorithm fails 
to deliver the minimal order, for instance, as in the previous example. 

But this is not true in general. Running the q-version of Zeilberger's algorithm on 
certain q-analogues of classical hypergeometric summation and transformation formulas 
one observes that the orders increase in comparison to the recurrence orders obtained 
in the case q ~ 1. A relatively simple but important example is the following identity 
due to Rogers, 

~--~(_l)kqk(3k_l) /2[2n ] [2n]!,,  
k=-n n + k = [--~. t l  - q)n. (31) 

Besides playing a key role in proving identities of  the Rogers-Ramanujan type [5], 
in the limit as n ~ ce it yields the celebrated Eulerian pentagonal number theorem. 
Despite its fundamental importance with respect to q-hypergeometric identities, for 
q ~ 1 it specializes to a trivial instance of the binomial theorem, 

( -1)k  n + k  = ( - 1 ) n Z ( - 1 ) k  =t~n'O' 
k=--n  k=0 

which could be treated also with Gosper's algorithm. 

Applying qZe i l  to the left-hand side of (31) surprisingly results in a q-difference 
equation of order 3 (!), 

In[12] := qZeil [(-l)'k q^ (k(3k-l)/2) qBinomial [2n,n+k,q], 

{k,-Infinity,Infinity}, n, 3] 



20 S.A. Abramov et al./Discrete Mathematics 180 (1998) 3-22 

Out[12]= SUM[n] == ((-q + qn) (q + qn) (_q2+ qn) (q2+ qn) 

> (_q3+ q2n) (_qS+ q2n) SUM[-3 + n]) / q11+ (q _ qn) 

> (q + qn) (_q3+ q2n) (q2+ q3+ q4+ q2n) SUM[-2 + n] 
q6 + 

>(q2+q3+q4-q3n-q2+2n-ql + 3n) SUM[-I + n] 
q2 

Applying qHyper we find one q-hypergeometric solution of this recurrence (after re- 
placing qn by x, and SUM[n+k] by Y[q^k x]): 

In[13]:=% /. {SUM[n + a_.] -> Y[q^a x], 

q^(a_, n + b_.) -> x^a q^b}; 

In[14]:= qHyper[%, Y[x]] 

Warning: irreducible factors of degree >i in trailing 
coefficient; some solutions may not be found 

Out[14] = {(1 + q x) (1 - q X2)} 

This means that for one solution y,  = y(qn), we have 

Yn+l = ( l + q n + l ) ( 1  _ q2.+l). 
Yn 

From this together with the initial values the right-hand side evaluation of  (31) is easily 
computed. 

Another way to treat the increase of  recurrence orders in the q-case was 
found by Paule [10]. His method of 'summing the even part', or variations of  it, 
consists in rewriting the given sum by exploiting symmetries of  the summand. 
After this preprocessing the q-version of Zeilberger's algorithm delivers the re- 
cursion of minimal order. We give a brief illustrating example. Let f(n,k) denote 
the summand of the Rogers identity (31). Since }-~k f(n,k)= ~-]k f(n,-k), it follows 
that 

1 1 
Z f ( n , k ) =  ~ Z ( f ( n , k )  4- f(n,-k))= ~ Z ( 1  + qk)f(n,k). 

k k k 

The extra factor 1 + qk increases the chance that the q-Zeilberger algorithm finds 
a recurrence of lower order. Indeed, now one gets by applying q Z e i l  the minimal 
recurrence of order 1. 
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In[iS]:=qZeil[(-l)^k (l+q^k)/2 q^(k(3k-l)/2) qBinomial[2n,n+k,q], 

{k,-Infinity,Infinity}, n, i] 

Out[15]=SUM[n] == (I + qn) (I - q-i + 2 n) SUM[-I + n] 

Paule ' s  method is o f  special impor tance  with respect to the theory o f  q - W Z  pairs [16]. 

There are various applications,  [10] or [14], where  ' s u m m i n g  the even  par t '  enables  

one to manufacture  the dual or compan ion  identities. We  only  men t ion  two examples  

for which  the q-Zei lberger  a lgori thm delivers a recurrence o f  increased order 3, name ly  

the Rogers  identi ty (31)  and the q-analogue  o f  D i x o n ' s  formula,  

Z ( -  1)kqk(3k--1)/2 + + + [n]![b]![c]! 

k 

Despite the fact that Paule ' s  method applies to most  ' increased  order '  cases o f  definite 

q-hypergeometr ic  sums one finds in standard literature (and  also to nontr iv ia l  q--+ 1 

examples  as recently found by  Zei lberger  and Petkov~ek),  the symmetry-preprocess ing  

up to now algori thmical ly has not  been  fully understood.  For instance,  it is not  at 

all obvious  how one could apply the method  in the case o f  identi ty (30). Therefore 

the a lgor i thm q H y p e r  is currently the on ly  tool that construct ively  decides about  exis- 

tence of  q-hypergeometr ic  evaluat ion  o f  a definite q-hypergeometr ic  sum for which  the 

q-Zei lberger  algori thm delivers a recurrence o f  order greater than 1. 
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