179 research outputs found

    High-frequency ultrasonic speckle velocimetry in sheared complex fluids

    Full text link
    High-frequency ultrasonic pulses at 36 MHz are used to measure velocity profiles in a complex fluid sheared in the Couette geometry. Our technique is based on time-domain cross-correlation of ultrasonic speckle signals backscattered by the moving medium. Post-processing of acoustic data allows us to record a velocity profile in 0.02--2 s with a spatial resolution of 40 μ\mum over 1 mm. After a careful calibration using a Newtonian suspension, the technique is applied to a sheared lyotropic lamellar phase seeded with polystyrene spheres of diameter 3--10 μ\mum. Time-averaged velocity profiles reveal the existence of inhomogeneous flows, with both wall slip and shear bands, in the vicinity of a shear-induced ``layering'' transition. Slow transient regimes and/or temporal fluctuations can also be resolved and exhibit complex spatio-temporal flow behaviors with sometimes more than two shear bands.Comment: 15 pages, 18 figures, submitted to Eur. Phys. J. A

    Effect of polysaccharides on the hydration of cement suspension

    Get PDF
    International audienceThis work compares the effects induced by polysaccharides on the hydration of cement. It also brings new insights into the interaction mechanisms between these two components. Several parameters such as structure, concentration, average molecular weight, and the soluble fraction value of the polysaccharides were examined. The hydration of cement was monitored by conductivity measurement, and ionic chromatography. The influence of polysaccharide structure on the kinetics of cement hydration was revealed. The extent of retardation increases when polysaccharide concentration rises. Dextrins with lower average molecular weights compared with starches favor a higher soluble fraction value and further retard hydration. The growth of hydrates seemed to be more affected by the presence of these admixtures than did the dissolution of anhydrous particles or the nucleation of former hydrate

    Combination of a fusogenic glycoprotein, pro-drug activation and oncolytic HSV as an intravesical therapy for superficial bladder cancer

    Get PDF
    Background: There are still no effective treatments for superficial bladder cancer (SBC)/non-muscle invasive bladder cancer. Following treatment, 20% of patients still develop metastatic disease. Superficial bladder cancer is often multifocal, has high recurrences after surgical resection and recurs after intravesical live Bacillus Calmette-Guérin. Oncovex GALV/CD, an oncolytic herpes simplex virus-1, has shown enhanced local tumour control by combining oncolysis with the expression of a highly potent pro-drug activating gene and the fusogenic glycoprotein. Methods: In vitro fusion/prodrug/apoptotic cell-based assays. In vivo orthotopic bladder tumour model, visualised by computed microtomography. Results: Treatment of seven human bladder carcinoma cell lines with the virus resulted in tumour cell killing through oncolysis, pro-drug activation and glycoprotein fusion. Oncovex GALV/CD and mitomycin C showed a synergistic effect, whereas the co-administration with cisplatin or gemcitabine showed an antagonistic effect in vitro. Transitional cell cancer (TCC) cells follow an apoptotic cell death pathway after infection with Oncovex GALV/CD + with or without 5-FC. In vivo results showed that intravesical treatment with Oncovex GALV/CD prodrug (5-FC) reduced the average tumour volume by over 95% compared with controls.Discussion: Our in vitro and in vivo results indicate that Oncovex GALV/CD can improve local tumour control within the bladder, and potentially alter its natural history

    RAL GTPases drive intestinal stem cell function and regeneration through internalization of WNT signalosomes

    Get PDF
    Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential

    Ezrin Ubiquitylation by the E3 Ubiquitin Ligase, WWP1, and Consequent Regulation of Hepatocyte Growth Factor Receptor Activity

    Get PDF
    The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY477 present in ezrin’s C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY477 motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression

    Additional Serine/Threonine Phosphorylation Reduces Binding Affinity but Preserves Interface Topography of Substrate Proteins to the c-Cbl TKB Domain

    Get PDF
    The E3-ubiquitin ligase, c-Cbl, is a multi-functional scaffolding protein that plays a pivotal role in controlling cell phenotype. As part of the ubiquitination and downregulation process, c-Cbl recognizes targets, such as tyrosine kinases and the Sprouty proteins, by binding to a conserved (NX/R)pY(S/T)XXP motif via its uniquely embedded SH2 domain (TKB domain). We previously outlined the mode of binding between the TKB domain and various substrate peptide motifs, including epidermal growth factor receptor (EGFR) and Sprouty2 (Spry2), and demonstrated that an intrapetidyl hydrogen bond forms between the (pY-1) arginine or (pY-2) asparagine and the phosphorylated tyrosine, which is crucial for binding. Recent reports demonstrated that, under certain types of stimulation, the serine/threonine residues at the pY+1 and/or pY+2 positions within this recognition motif of EGFR and Sprouty2 may be endogenously phosphorylated. Using structural and binding studies, we sought to determine whether this additional phosphorylation could affect the binding of the TKB domain to these peptides and consequently, whether the type of stimulation can dictate the degree to which substrates bind to c-Cbl. Here, we show that additional phosphorylation significantly reduces the binding affinity between the TKB domain and its target proteins, EGFR and Sprouty2, as compared to peptides bearing a single tyrosine phosphorylation. The crystal structure indicates that this is accomplished with minimal changes to the essential intrapeptidyl bond and that the reduced strength of the interaction is due to the charge repulsion between c-Cbl and the additional phosphate group. This obvious reduction in binding affinity, however, indicates that Cbl's interactions with its TKB-centered binding partners may be more favorable in the absence of Ser/Thr phosphorylation, which is stimulation and context specific in vivo. These results demonstrate the importance of understanding the environment in which certain residues are phosphorylated, and the necessity of including this in structural investigations

    Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease

    Get PDF
    BACKGROUND: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease

    The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Get PDF
    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies
    corecore