733 research outputs found

    Observation and inverse problems in coupled cell networks

    Full text link
    A coupled cell network is a model for many situations such as food webs in ecosystems, cellular metabolism, economical networks... It consists in a directed graph GG, each node (or cell) representing an agent of the network and each directed arrow representing which agent acts on which one. It yields a system of differential equations x˙(t)=f(x(t))\dot x(t)=f(x(t)), where the component ii of ff depends only on the cells xj(t)x_j(t) for which the arrow jij\rightarrow i exists in GG. In this paper, we investigate the observation problems in coupled cell networks: can one deduce the behaviour of the whole network (oscillations, stabilisation etc.) by observing only one of the cells? We show that the natural observation properties holds for almost all the interactions ff

    A test for a conjecture on the nature of attractors for smooth dynamical systems

    Full text link
    Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and H\'enon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.Comment: Accepted version. Minor modifications from previous versio

    Integration of Host Plant Resistance and Insecticides in the Control of \u3ci\u3eNephotettix virescens\u3c/i\u3e (Homoptera: Cicadelli-dae), a Vector of Rice Tungro Virus

    Get PDF
    Combined effects of levels of vector resistance and insecticide application in control of rice tungro virus (RTV) were determined in three field tests. Cultivar “IR28,” with high levels of resistance to the vector, Nephotettix virescens (Distant), had low RTV infection in all treatments including the untreated check. In moderately resistant “IR36,” RTV decreased with an increase in level of insecticide but did not decrease to a level equaling the untreated “IR28.” The N. virescens-susceptible cultivar “IR22” had extremely high levels of RTV infection at all insecticide levels. Economic analysis indicated that gross profit and net gain were highest in the N. virescens-resistant “IR28,” intermediate in moderately resistant “IR36,” and lowest in susceptible “IR22.

    Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency

    Full text link
    We prove that the C3C^3 diffeomorphisms on surfaces, exhibiting infinitely many sinksnear the generic unfolding of a quadratic homoclinic tangency of a dissipative saddle, can be perturbed along an infinite dimensional manifold of C3C^3 diffeomorphisms such that infinitely many sinks persist simultaneously. On the other hand, if they are perturbed along one-parameter families that unfold generically the quadratic tangencies, then at most a finite number of those sinks have continuation

    On the arithmetic sums of Cantor sets

    Full text link
    Let C_\la and C_\ga be two affine Cantor sets in R\mathbb{R} with similarity dimensions d_\la and d_\ga, respectively. We define an analog of the Bandt-Graf condition for self-similar systems and use it to give necessary and sufficient conditions for having \Ha^{d_\la+d_\ga}(C_\la + C_\ga)>0 where C_\la + C_\ga denotes the arithmetic sum of the sets. We use this result to analyze the orthogonal projection properties of sets of the form C_\la \times C_\ga. We prove that for Lebesgue almost all directions θ\theta for which the projection is not one-to-one, the projection has zero (d_\la + d_\ga)-dimensional Hausdorff measure. We demonstrate the results on the case when C_\la and C_\ga are the middle-(1-2\la) and middle-(1-2\ga) sets

    Motion of vortices implies chaos in Bohmian mechanics

    Get PDF
    Bohmian mechanics is a causal interpretation of quantum mechanics in which particles describe trajectories guided by the wave function. The dynamics in the vicinity of nodes of the wave function, usually called vortices, is regular if they are at rest. However, vortices generically move during time evolution of the system. We show that this movement is the origin of chaotic behavior of quantum trajectories. As an example, our general result is illustrated numerically in the two-dimensional isotropic harmonic oscillator.Comment: 7 pages 5 figure

    Spectra of Discrete Schr\"odinger Operators with Primitive Invertible Substitution Potentials

    Full text link
    We study the spectral properties of discrete Schr\"odinger operators with potentials given by primitive invertible substitution sequences (or by Sturmian sequences whose rotation angle has an eventually periodic continued fraction expansion, a strictly larger class than primitive invertible substitution sequences). It is known that operators from this family have spectra which are Cantor sets of zero Lebesgue measure. We show that the Hausdorff dimension of this set tends to 11 as coupling constant λ\lambda tends to 00. Moreover, we also show that at small coupling constant, all gaps allowed by the gap labeling theorem are open and furthermore open linearly with respect to λ\lambda. Additionally, we show that, in the small coupling regime, the density of states measure for an operator in this family is exact dimensional. The dimension of the density of states measure is strictly smaller than the Hausdorff dimension of the spectrum and tends to 11 as λ\lambda tends to 00
    corecore