1,339 research outputs found

    Impact of Bias Temperature Instability on Soft Error Susceptibility

    Get PDF
    In this paper, we address the issue of analyzing the effects of aging mechanisms on ICs' soft error (SE) susceptibility. In particular, we consider bias temperature instability (BTI), namely negative BTI in pMOS transistors and positive BTI in nMOS transistors that are recognized as the most critical aging mechanisms reducing the reliability of ICs. We show that BTI reduces significantly the critical charge of nodes of combinational circuits during their in-field operation, thus increasing the SE susceptibility of the whole IC. We then propose a time dependent model for SE susceptibility evaluation, enabling the use of adaptive SE hardening approaches, based on the ICs lifetime

    The evolution of gender gaps in numeracy and literacy between childhood and young adulthood

    Get PDF
    Numeracy and literacy are important foundation skills which command significant wage premia in modern labour markets. The existence of gender differences in these skills is therefore of potential concern, and has spurred a large amount of research, especially with respect to numeracy skills. Still, little is known about the moment in which such gaps emerge, how they evolve, and if this evolution differs across countries. We use data from large scale international assessments to follow representative samples of birth-cohorts over time, and analyse how gender gaps in numeracy and literacy evolve from age 10 to age 27. We find that the advantage of boys in numeracy is small at age 10, but grows considerably between age 15 and 27. The gender gap in literacy follows a very different pattern: it is small at age 10, large and in favour of girls at age 15, and negligible by age 27

    The concentration-mass relation of clusters of galaxies from the OmegaWINGS survey

    Get PDF
    The relation between a cosmological halo concentration and its mass (cMr) is a powerful tool to constrain cosmological models of halo formation and evolution. On the scale of galaxy clusters the cMr has so far been determined mostly with X-ray and gravitational lensing data. The use of independent techniques is helpful in assessing possible systematics. Here we provide one of the few determinations of the cMr by the dynamical analysis of the projected-phase-space distribution of cluster members. Based on the WINGS and OmegaWINGS data sets, we used the Jeans analysis with the MAMPOSSt technique to determine masses and concentrations for 49 nearby clusters, each of which has ~60 spectroscopic members or more within the virial region, after removal of substructures. Our cMr is in statistical agreement with theoretical predictions based on LambdaCDM cosmological simulations. Our cMr is different from most previous observational determinations because of its flatter slope and lower normalization. It is however in agreement with two recent cMr obtained using the lensing technique on the CLASH and LoCuSS cluster data sets. In the future we will extend our analysis to galaxy systems of lower mass and at higher redshifts.Comment: Astronomy & Astrophysics in press. 11 pages, 6 figure

    Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    Get PDF
    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 107. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

    Development of a Disposable Gold Electrodes-Based Sensor for Electrochemical Measurements of cDNA Hybridization

    Get PDF
    AbstractThis work deals with the development of a disposable electrochemical biosensor for the speciïŹc detection of short DNA sequences. The sensor is an amperometric transducer with three planar electrodes, comprising a working, a counter and a pseudo-reference electrode, all made of a gold layer over a polycarbonate substrate. For the development of the genosensor, the working electrode was modiïŹed using thiol-tethered 33-mer DNA probe by chemisorptions, in a concentration range from 0.1 ÎŒM to 5 ÎŒM. Immobilization of ssDNA on gold surface was monitored with electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) in Fe(CN)64−/13− and Ruthenium(II)/(III) solutions. The time dependence of ssDNA probe immobilization was also studied. The hybridization detection is then compared with EIS and DPV measurements

    Performance of the ARPA-SMR limited-area ensemble prediction system: two flood cases

    Get PDF
    The performance of the ARPA-SMR Limited-area Ensemble Prediction System (LEPS), generated by nesting a limited-area model on selected members of the ECMWF targeted ensemble, is evaluated for two flood events that occurred during September 1992. The predictability of the events is studied for forecast times ranging from 2 to 4 days. The extent to which floods localised in time and space can be forecast at high resolution in probabilistic terms was investigated. Rainfall probability maps generated by both LEPS and ECMWF targeted ensembles are compared for different precipitation thresholds in order to assess the impact of enhanced resolution. At all considered forecast ranges, LEPS performs better, providing a more accurate description of the event with respect to the spatio-temporal location, as well as its intensity. In both flood cases, LEPS probability maps turn out to be a very valuable tool to assist forecasters to issue flood alerts at different forecast ranges. It is also shown that at the shortest forecast range, the deterministic prediction provided by the limited area model, when run in a higher-resolution configuration, provides a very accurate rainfall pattern and a good quantitative estimate of the total rainfall deployed in the flooded regions

    OmegaWINGS: OmegaCAM@VST observations of WINGS galaxy clusters

    Get PDF
    The Wide-field Nearby Galaxy-cluster Survey (WINGS) is a wide-field multi-wavelength survey of X-ray selected clusters at z =0.04-0.07. The original 34'x34' WINGS field-of- view has now been extended to cover a 1 sq.deg field with both photometry and spectroscopy. In this paper we present the Johnson B and V-band OmegaCAM/VST observations of 46 WINGS clusters, together with the data reduction, data quality and Sextractor photometric catalogs. With a median seeing of 1arcs in both bands, our 25-minutes exposures in each band typically reach the 50% completeness level at V=23.1 mag. The quality of the astrometric and photometric accuracy has been verified by comparison with the 2MASS as well as with SDSS astrometry, and SDSS and previous WINGS imaging. Star/galaxy separation and sky-subtraction procedure have been tested comparing with previous WINGS data. The Sextractor photometric catalogues are publicly available at the CDS, and will be included in the next release of the WINGS database on the VO together with the OmegaCAM reduced images. These data form the basis for a large ongoing spectroscopic campaign with AAOmega/AAT and is being employed for a variety of studies. [abridged]Comment: submitted to A&
    • 

    corecore