2,085 research outputs found

    Quantum-Statistical Current Correlations in Multi-Lead Chaotic Cavities

    Full text link
    Quantum mechanics requires that identical particles are treated as indistinguishable. This requirement leads to correlations in the fluctuating properties of a system. Theoretical predictions are made for an experiment on a multi-lead chaotic quantum dot which can identify exchange effects in electronic current-current correlations. Interestingly, we find that the ensemble averaged exchange effects are of the order of the channel number, and are insensitive to dephasing.Comment: 4 pages REVTEX, including two figure

    Reflection of light from a disordered medium backed by a phase-conjugating mirror

    Get PDF
    This is a theoretical study of the interplay of optical phase-conjugation and multiple scattering. We calculate the intensity of light reflected by a phase-conjugating mirror when it is placed behind a disordered medium. We compare the results of a fully phase-coherent theory with those from the theory of radiative transfer. Both methods are equivalent if the dwell time \tau_{dwell} of a photon in the disordered medium is much larger than the inverse of the frequency shift 2\Delta\omega acquired at the phase-conjugating mirror. When \tau_{dwell} \Delta\omega < 1, in contrast, phase coherence drastically affects the reflected intensity. In particular, a minimum in the dependence of the reflectance on the disorder strength disappears when \Delta\omega is reduced below 1/\tau_{dwell}. The analogies and differences with Andreev reflection of electrons at the interface between a normal metal and a superconductor are discussed.Comment: 27 pages RevTeX with 11 figures included with psfi

    Non-perturbative calculation of the probability distribution of plane-wave transmission through a disordered waveguide

    Get PDF
    A non-perturbative random-matrix theory is applied to the transmission of a monochromatic scalar wave through a disordered waveguide. The probability distributions of the transmittances T_{mn} and T_n=\sum_m T_{mn} of an incident mode n are calculated in the thick-waveguide limit, for broken time-reversal symmetry. A crossover occurs from Rayleigh or Gaussian statistics in the diffusive regime to lognormal statistics in the localized regime. A qualitatively different crossover occurs if the disordered region is replaced by a chaotic cavity. ***Submitted to Physical Review E.***Comment: 7 pages, REVTeX-3.0, 5 postscript figures appended as self-extracting archive. A complete postscript file with figures and text (4 pages) is available from http://rulgm4.LeidenUniv.nl/preprints.htm

    Spontaneous Emission in Chaotic Cavities

    Get PDF
    The spontaneous emission rate \Gamma of a two-level atom inside a chaotic cavity fluctuates strongly from one point to another because of fluctuations in the local density of modes. For a cavity with perfectly conducting walls and an opening containing N wavechannels, the distribution of \Gamma is given by P(\Gamma) \propto \Gamma^{N/2-1}(\Gamma+\Gamma_0)^{-N-1}, where \Gamma_0 is the free-space rate. For small N the most probable value of \Gamma is much smaller than the mean value \Gamma_0.Comment: 4 pages, RevTeX, 1 figur

    Shot noise in ferromagnet--normal metal systems

    Full text link
    A semiclassical theory of the low frequency shot noise in ferromagnet - normal metal systems is formulated. Non-collinear magnetization directions of the ferromagnetic leads, arbitrary junctions and the elastic and inelastic scattering regimes are considered. The shot noise is governed by a set of mesoscopic parameters that are expressed in terms of the microscopic details of the junctions in the circuit. Explicit results in the case of ballistic, tunnel, and diffusive junctions are evaluated. The shot noise, the current and the Fano factor are calculated for a double barrier ferromagnet - normal metal - ferromagnet system. It is demonstrated that the shot noise can have a non-monotonic behavior as a function of the relative angle between the magnetizations of the ferromagnetic reservoirs.Comment: 17 pages, 7 figure

    Random bond XXZ chains with modulated couplings

    Get PDF
    The magnetization behavior of q-periodic antiferromagnetic spin 1/2 Heisenberg chains under uniform magnetic fields is investigated in a background of disorder exchange distributions. By means of both real space decimation procedures and numerical diagonalizations in XX chains, it is found that for binary disorder the magnetization exhibits wide plateaux at values of 1+2(p-1)/q, where p is the disorder strength. In contrast, no spin gaps are observed in the presence of continuous exchange distributions. We also study the magnetic susceptibility at low magnetic fields. For odd q-modulations the susceptibility exhibits a universal singularity, whereas for q even it displays a non-universal power law behavior depending on the parameters of the distribution.Comment: 4 pages, 3 figures. Final version to appear in PR

    Transmission through a many-channel random waveguide with absorption

    Full text link
    We compute the statistical distribution of the transmittance of a random waveguide with absorption in the limit of many propagating channels. We consider the average and fluctuations of the conductance T = tr t^{\dagger} t, where t is the transmission matrix, the density of transmission eigenvalues \tau (the eigenvalues of t^{\dagger} t), and the distribution of the plane-wave transmittances T_a and T_{ab}. For weak absorption (length L smaller than the exponential absorption length \xi_a), we compute moments of the distributions, while for strong absorption (L >> \xi_a), we can find the complete distributions. Our findings explain recent experiments on the transmittance of random waveguides by Stoytchev and Genack [Phys. Rev. Lett. 79, 309 (1997)].Comment: 13 pages, RevTeX; 9 figures include

    Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures

    Full text link
    We discuss a number of basic physical mechanisms relevant to the formation of the proximity effect in superconductor/normal metal (SN) systems. Specifically, we review why the proximity effect sharply discriminates between systems with integrable and chaotic dynamics, respectively, and how this feature can be incorporated into theories of SN systems. Turning to less well investigated terrain, we discuss the impact of quantum diffractive scattering on the structure of the density of states in the normal region. We consider ballistic systems weakly disordered by pointlike impurities as a test case and demonstrate that diffractive processes akin to normal metal weak localization lead to the formation of a hard spectral gap -- a hallmark of SN systems with chaotic dynamics. Turning to the more difficult case of clean systems with chaotic boundary scattering, we argue that semiclassical approaches, based on classifications in terms of classical trajectories, cannot explain the gap phenomenon. Employing an alternative formalism based on elements of quasiclassics and the ballistic σ\sigma-model, we demonstrate that the inverse of the so-called Ehrenfest time is the relevant energy scale in this context. We discuss some fundamental difficulties related to the formulation of low energy theories of mesoscopic chaotic systems in general and how they prevent us from analysing the gap structure in a rigorous manner. Given these difficulties, we argue that the proximity effect represents a basic and challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde

    The value of genetic testing in the diagnosis and risk stratification of arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by risk of malignant ventricular arrhythmias (VA). ARVC is diagnosed using an array of clinical tests in the consensus-based task force criteria (TFC), one of which is genetic testing. OBJECTIVE: To investigate the value of genetic testing in diagnosing ARVC and its relation to the occurrence of first malignant VA. METHODS: A multicenter cohort of ARVC patients was scored using the revised 2010 TFC with and without genetic criterion, analyzing any resulting loss or delay of diagnosis. Malignant VA was defined as sustained ventricular arrhythmia (≥30s duration at ≥100 bpm or requiring intervention). RESULTS: We included 402 subjects (55% male, 54% proband, 40 [27-51] years old at presentation) who were diagnosed with definite ARVC. A total of 232 (58%) subjects fulfilled genetic testing criteria. Removing the genetic criterion caused loss of diagnosis in 18 (4%) patients (11/216 [5%] probands, 7/186 [4%] relatives), and delay of diagnosis ≥30 days in 22 (5%) patients (21/216 [10%] probands, 1/186 [0.5%] relative). A first malignant VA occurred in no patients who lost diagnosis and in 3 patients (3/216 [1%] probands and no relatives) during their diagnosis delay, none fatal. Time to event analysis showed no significant difference in time from diagnosis to malignant VA between pathogenic variant carriers and non-carriers. CONCLUSION: Disregarding the genetic criterion of the TFC caused loss or delay of diagnosis in 10% (n=40/402) of ARVC patients. Malignant VA occurred in 1% (n=3/402) of cases with lost or delayed diagnosis, none fatal

    Charge densities and charge noise in mesoscopic conductors

    Full text link
    We introduce a hierarchy of density of states to characterize the charge distribution in a mesoscopic conductor. At the bottom of this hierarchy are the partial density of states which represent the contribution to the local density of states if both the incident and the out-going scattering channel is prescribed. The partial density of states play a prominent role in measurements with a scanning tunneling microscope on multiprobe conductors in the presence of current flow. The partial density of states determine the degree of dephasing generated by a weakly coupled voltage probe. In addition the partial density of states determine the frequency-dependent response of mesoscopic conductors in the presence of slowly oscillating voltages applied to the contacts of the sample. The partial density of states permit the formulation of a Friedel sum rule which can be applied locally. We introduce the off-diagonal elements of the partial density of states matrix to describe charge fluctuation processes. This generalization leads to a local Wigner-Smith life-time matrix.Comment: 10 pages, 2 figure
    corecore