27 research outputs found

    Low incidence of severe bacterial infections in hospitalised patients with COVID-19 : A population-based registry study

    Get PDF
    Background Bacterial infections complicating COVID-19 are rare but present a challenging clinical entity. The aim of this study was to evaluate the incidence, aetiology and outcome of severe laboratory-verified bacterial infections in hospitalised patients with COVID-19. Methods All laboratory-confirmed patients with COVID-19 admitted to specialised healthcare hospitals in the Capital Province of Finland during the first wave of COVID-19 between 27 February and 21 June 2020 were retrospectively studied. We gathered the blood and respiratory tract culture reports of these patients and analysed their association with 90-day case-fatality using multivariable regression analysis. Results A severe bacterial infection was diagnosed in 40/585 (6.8%) patients with COVID-19. The range of bacteria was diverse, and the most common bacterial findings in respiratory samples were gram-negative, and in blood cultures gram-positive bacteria. Patients with severe bacterial infection had longer hospital stay (mean 31; SD 20 days) compared to patients without (mean 9; SD 9 days; p < 0.001). Case-fatality was higher with bacterial infection (15% vs 11%), but the difference was not statistically significant (OR 1.38 CI95% 0.56-3.41). Conclusions Severe bacterial infection complicating COVID-19 was a rare occurrence in our cohort. Our results are in line with the current understanding that antibiotic treatment for hospitalised COVID-19 patients should only be reserved for situations where a bacterial infection is strongly suspected. The ever-evolving landscape of the pandemic and recent advances in immunomodulatory treatment of COVID-19 patients underline the need for continuous vigilance concerning the possibility and frequency of nosocomial bacterial infections.Peer reviewe

    Diabetic Kidney Disease in FVB/NJ Akita Mice: Temporal Pattern of Kidney Injury and Urinary Nephrin Excretion

    Get PDF
    Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process

    Nephrin TRAP Mice Lack Slit Diaphragms and Show Fibrotic Glomeruli and Cystic Tubular Lesions.

    No full text
    The molecular mechanisms maintaining glomerular filtration barrier are under intensive study. This study describes a mutant Nphs1 mouse line generated by gene-trapping. Nephrin, encoded by Nphs1, is a structural protein of interpodocyte filtration slits crucial for formation of primary urine. Nephrintrap/trap mutants show characteristic features of proteinuric disease and die soon after birth. Morphologically, fibrotic glomeruli with distorted structures and cystic tubular lesions were observed, but no prominent changes in the branching morphogenesis of the developing collecting ducts could be found. Western blotting and immunohistochemical analyses confirmed the absence of nephrin in nephrintrap/trap glomeruli. The immunohistochemical staining showed also that the interaction partner of nephrin, CD2-associated protein (CD2AP), and the slit-diaphragm-associated protein, ZO-1 -, appeared unchanged, whereas the major anionic apical membrane protein of podocytes, podocalyxin, somewhat punctate as compared with the wild-type (wt) and nephrinwt/trap stainings. Electron microscopy revealed that >90% of the podocyte foot processes were fused. The remaining interpodocyte junctions lacked slit diaphragms and, instead, showed tight adhering areas. In the heterozygote glomeruli, approximately one third of the foot processes were fused and real-time RT-PCR showed >60% decrease of nephrin-specific transcripts. These results show an effective nephrin gene elimination, resulting in a phenotype that resembles human congenital nephrotic syndrome. Although the nephrintrap/trap mice can be used to study the pathophysiology of the disease, the heterozygous mice may provide a useful model to study the gene dose effect of this crucial protein of the glomerular filtration barrier
    corecore