431 research outputs found
Additional Evidence for the Surface Origin of the Peculiar Angular-Dependent Magnetoresistance Oscillations Discovered in a Topological Insulator Bi_{1-x}Sb_{x}
We present detailed data on the unusual angular-dependent magnetoresistance
oscillation phenomenon recently discovered in a topological insulator
Bi_{0.91}Sb_{0.09}. Direct comparison of the data taken before and after
etching the sample surface gives compelling evidence that this phenomenon is
essentially originating from a surface state. The symmetry of the oscillations
suggests that it probably comes from the (111) plane, and obviously a new
mechanism, such as a coupling between the surface and the bulk states, is
responsible for this intriguing phenomenon in topological insulators.Comment: 5 pages, 4 figures, Proceedings manuscript for the 19th International
Conference on the Application of High Magnetic Fields in Semiconductor
Physics and Nanotechnology (HMF-19
Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator
Spin-polarized band structure of the three-dimensional quantum spin Hall
insulator (x=0.12-0.13) was fully elucidated by
spin-polarized angle-resolved photoemission spectroscopy using a high-yield
spin polarimeter equipped with a high-resolution electron spectrometer. Between
the two time-reversal-invariant points, and , of the
(111) surface Brillouin zone, a spin-up band ( band) was found to
cross the Fermi energy only once, providing unambiguous evidence for the strong
topological insulator phase. The observed spin-polarized band dispersions
determine the "mirror chirality" to be -1, which agrees with the theoretical
prediction based on first-principles calculations
Electronic Control of Spin Alignment in pi-Conjugated Molecular Magnets
Intramolecular spin alignment in pi-conjugated molecules is studied
theoretically in a model of a Peierls-Hubbard chain coupled with two localized
spins. By means of the exact diagonalization technique, we demonstrate that a
spin singlet (S=0) to quartet (S=3/2) transition can be induced by electronic
doping, depending on the chain length, the positions of the localized spins,
and the sign of the electron-spin coupling. The calculated results provides a
theoretical basis for understanding the mechanism of spin alignment recently
observed in a diradical donor molecule.Comment: 4 pages, 4 figures, Physical Review Letters (in press
Ciphertext-Policy Attribute-Based Encryption with Key-Delegation Abuse Resistance
Attribute-based encryption (ABE) is a promising cryptographic primitive that allows one-to-many encryption. In such a system, users\u27 private keys are linked to their access rights. We note that if a user can generate a new private key for a portion of his/her access right, this could potentially lead to some undesirable situations, which violate the access control policy. Interestingly, to date, there is no work that looks into this matter in detail nor addresses it. We point out that this is a property that exists in ABE systems, which we refer to key-delegation abuse . ABE systems that suffer from key-delegation abuse will hinder the adoption of these systems in practice. In this work, for the first time in the literature, we address the key-delegation abuse problem in Ciphertext-policy Attribute-based Encryption (CP-ABE) systems. We introduce a new mechanism to enhance CP-ABE schemes that provide protections against this key-delegation abuse issue. We formalize the security requirements for such a property, and subsequently construct a CP-ABE scheme that satisfies the new security requirements. We also present an application of our scheme to a traceable CP-ABE, where the traitors , i.e. the users who have leaked their keys, can be traced. address the key-delegation abuse problem in Ciphertext-policy Attribute-based Encryption (CP-ABE) systems. We introduce a new mechanism to enhance CPABE schemes that provide protections against this key-delegation abuse issue. We formalize the security requirements for such a property, and subsequently construct a CP-ABE scheme that satisfies the new security requirements.We also present an application of our scheme to a traceable CP-ABE, where the traitors , i.e. the users who have leaked their keys, can be traced
Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks
Weinvestigate the thickness and temperature dependence of a series of Ni0.8Fe0.2/Ir0.2Mn0.8 bilayer samples with varying thickness ratio of the ferromagnet/antiferromagnet (tFM tAFM) in order to explore the exchange coupling strengths in tunneling anisotropic magnetoresistance (TAMR) devices. Specific values of tFM tAFM lead to four distinct scenarios with specific electric responses to moderate magnetic fields. The characteristic dependence of the measured TAMR signal on applied voltage allows us to confirm its persistence up to room temperature despite an overlapped contribution by a thermal magnetic noise
Prominin-1 Modulates Rho/ROCK-Mediated Membrane Morphology and Calcium-Dependent Intracellular Chloride Flux
Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance
Network Dynamics Mediate Circadian Clock Plasticity
A circadian clock governs most aspects of mammalian behavior. Although its properties are in part genetically determined, altered light-dark environment can change circadian period length through a mechanism requiring de novo DNA methylation. We show here that this mechanism is mediated not via cell-autonomous clock properties, but rather through altered networking within the suprachiasmatic nuclei (SCN), the circadian “master clock,” which is DNA methylated in region-specific manner. DNA methylation is necessary to temporally reorganize circadian phasing among SCN neurons, which in turn changes the period length of the network as a whole. Interruption of neural communication by inhibiting neuronal firing or by physical cutting suppresses both SCN reorganization and period changes. Mathematical modeling suggests, and experiments confirm, that this SCN reorganization depends upon GABAergic signaling. Our results therefore show that basic circadian clock properties are governed by dynamic interactions among SCN neurons, with neuroadaptations in network function driven by the environment
- …