215 research outputs found

    USE OF INTENSIVE METHODS FOR TREATMENT OF RENAL DISEASES

    Get PDF
    No abstrac

    OPTIMAL WEIGHT AND DIALYSIS DOSE IN PATIENTS ON PERIODIC HEMODIALYSIS

    Get PDF
    Small patients tend to be better dialyzed than large ones. We analyzed the delivered dose of dialysis in two groups of patients - group A, body weight over 50 kg (n-39, m:f=28:l; 57,4 8,3 kg) and group B, body weight under 50 kg (n=15, m:f=6:9; 45,4 3,4 kg). We calculated KT/V and Time Average Concentration of urea (TAC) using two-pool method for urea kinetic modeling. The patients from group Ð’ had a higher KT/V urea =1,35 0,25 (p < 0,05) and lower TAC =13,7 2,72 (p < 0,05) with a shorter dialysis time. Mean serum protein and albumin levels for a year did not differ

    CLINICAL APPLICATION OF THE HAEMOPERFUSION DEVICES BULSORB 160 COMBINED WITH HAEMODIALYSIS

    Get PDF
    No abstrac

    SILENT KIDNEY AND TUMOURS OF THE UROGENITAL SYSTEM

    Get PDF
    No abstrac

    Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra

    Get PDF
    Accurate ab initio modeling of spectroscopic signals in nonlinear electronic spectra, such as bidimensional (2D) spectra, requires the computation of the electronic transitions induced by the incoming pump/probe pulses, resulting in a challenging calculation of many electronic excited states. A protocol is thus required to evaluate the variations of spectral properties, like transition energies and dipole moments, with the computational level, and to estimate the sensitivity of the spectra to these variations. Such a protocol is presented here within the framework of complete and restricted active space self-consistent field (CASSCF/RASSCF) theory and its second-order perturbation theory extensions (CASPT2/RASPT2). The electronic excited-state manifolds of pyrimidine nucleobases (thymine, uracil, and cytosine) are carefully characterized in vacuo employing high-level RAS(0,0|10,8|2,12)//SS-RASPT2 calculations. The results provide a reference data set that can be used for optimizing computational efforts and costs, as required for studying computationally more demanding multichromophoric systems (e.g., di- and oligonucleotides). The spectroscopic signatures of the 2D electronic spectrum of a perfectly stacked uracil–cytosine dimer model are characterized, and experimental setups are proposed that can resolve non-covalent interchromophoric interactions in canonical pyrimidine nucleobase-stacked dimers

    Coupled Electronic and Nuclear Motions during Azobenzene Photoisomerization Monitored by Ultrafast Electron Diffraction

    Get PDF
    Ultrafast electron diffraction is a powerful technique that can resolve molecular structures with femtosecond and angstrom resolutions. We demonstrate theoretically how it can be used to monitor conical intersection dynamics in molecules. Specific contributions to the signal are identified which vanish in the absence of vibronic coherence and offer a direct window into conical intersection paths. A special focus is on hybrid scattering from nuclei and electrons, a process that is unique to electron (rather than X-ray) diffraction and monitors the strongly coupled nuclear and electronic motions in the vicinity of conical intersections. An application is made to the cis to trans isomerization of azobenzene, computed with exact quantum dynamics wavepacket propagation in a reactive two-dimensional nuclear space

    Parameterization of a linear vibronic coupling model with multiconfigurational electronic structure methods to study the quantum dynamics of photoexcited pyrene

    Get PDF
    With this work, we present a protocol for the parameterization of a Linear Vibronic Coupling (LVC) Hamiltonian for quantum dynamics using highly accurate multiconfigurational electronic structure methods such as RASPT2/RASSCF, combined with a maximum-overlap diabatization technique. Our approach is fully portable and can be applied to many medium-size rigid molecules whose excited state dynamics requires a quantum description. We present our model and discuss the details of the electronic structure calculations needed for the parameterization, analyzing critical situations that could arise in the case of strongly interacting excited states. The protocol was applied to the simulation of the excited state dynamics of the pyrene molecule, starting from either the first or the second bright state (S2 or S5). The LVC model was benchmarked against state-of-the-art quantum mechanical calculations with optimizations and energy scans and turned out to be very accurate. The dynamics simulations, performed including all active normal coordinates with the multilayer multiconfigurational time-dependent Hartree method, show good agreement with the available experimental data, endorsing prediction of the excited state mechanism, especially for S5, whose ultrafast deactivation mechanism was not yet clearly understood
    corecore