34 research outputs found

    Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marine molluscs, as is the case with most aquatic animals, rely heavily on olfactory cues for survival. In the mollusc <it>Aplysia californica</it>, mate-attraction is mediated by a blend of water-borne protein pheromones that are detected by sensory structures called rhinophores. The expression of G protein and phospholipase C signaling molecules in this organ is consistent with chemosensory detection being via a G-protein-coupled signaling mechanism.</p> <p>Results</p> <p>Here we show that novel multi-transmembrane proteins with similarity to rhodopsin G-protein coupled receptors are expressed in sensory epithelia microdissected from the <it>Aplysia </it>rhinophore. Analysis of the <it>A. californica </it>genome reveals that these are part of larger multigene families that possess features found in metazoan chemosensory receptor families (that is, these families chiefly consist of single exon genes that are clustered in the genome). Phylogenetic analyses show that the novel <it>Aplysia </it>G-protein coupled receptor-like proteins represent three distinct monophyletic subfamilies. Representatives of each subfamily are restricted to or differentially expressed in the rhinophore and oral tentacles, suggesting that they encode functional chemoreceptors and that these olfactory organs sense different chemicals. Those expressed in rhinophores may sense water-borne pheromones. Secondary signaling component proteins Gα<sub>q</sub>, Gα<sub>i</sub>, and Gα<sub>o </sub>are also expressed in the rhinophore sensory epithelium.</p> <p>Conclusion</p> <p>The novel rhodopsin G-protein coupled receptor-like gene subfamilies identified here do not have closely related identifiable orthologs in other metazoans, suggesting that they arose by a lineage-specific expansion as has been observed in chemosensory receptor families in other bilaterians. These candidate chemosensory receptors are expressed and often restricted to rhinophores and oral tentacles, lending support to the notion that water-borne chemical detection in <it>Aplysia </it>involves species- or lineage-specific families of chemosensory receptors.</p

    Determinants of concurrent motor and language recovery during intensive therapy in chronic stroke patients: four single case studies

    Get PDF
    Despite intensive research on mechanisms of recovery of function after stroke, surprisingly little is known about determinants of concurrent recovery of language and motor functions in single patients. The alternative hypotheses are that the two functions might either “fight for resources” or use the same mechanisms in the recovery process. Here, we present follow-up data of four exemplary patients with different base levels of motor and language abilities. We assessed functional scales and performed exact lesion analysis to examine the connection between lesion parameters and recovery potential in each domain. Results confirm that preservation of the corticospinal tracts (CSTs) is a neural predictor for good motor recovery while preservation of the arcuate fasciculus (AF) is important for a good language recovery. However, results further indicate that even patients with large lesions in CST, AF, and superior longitudinal fasciculus, respectively, are able to recover their motor/language abilities during intensive therapy. We further found some indicators of a facilitating interaction between motor and language recovery. Patients with positive improvement of motor skills after therapy also improved in language skills, while the patients with no motor improvements were not able to gain any language recovery

    2016 Lush Science Prize

    No full text

    Abrasive Materials

    No full text
    corecore