3,829 research outputs found

    Phase field analysis of eutectic breakdown.

    Get PDF
    In this paper an isotropic multi-phase-field model is extended to include the effects of anisotropy and the spontaneous nucleation of an absent phase. This model is derived and compared against a published single phase model. Results from this model are compared against results from other multi-phase models, additionally this model is used to examine the break down of a regular two dimensional eutectic into a single phase dendritic front

    Phase Field Modeling of Fracture and Stress Induced Phase Transitions

    Get PDF
    We present a continuum theory to describe elastically induced phase transitions between coherent solid phases. In the limit of vanishing elastic constants in one of the phases, the model can be used to describe fracture on the basis of the late stage of the Asaro-Tiller-Grinfeld instability. Starting from a sharp interface formulation we derive the elastic equations and the dissipative interface kinetics. We develop a phase field model to simulate these processes numerically; in the sharp interface limit, it reproduces the desired equations of motion and boundary conditions. We perform large scale simulations of fracture processes to eliminate finite-size effects and compare the results to a recently developed sharp interface method. Details of the numerical simulations are explained, and the generalization to multiphase simulations is presented

    Activation of the LH receptor up regulates the type 2 adiponectin receptor in human granulosa cells

    Get PDF
    PURPOSE: Adiponectin is a predominantly adipocyte-derived hormone which influences insulin sensitivity and energy homeostasis through at least two receptors, AdipoR1 and AdipoR2. In animal models, adiponectin may regulate ovarian steroidogenesis, folliculogenesis, and ovulation. The receptors AdipoR1 and AdipoR2 are present in the human ovary, but their regulation is unknown. In these studies, we determined the effects of LH receptor activation on the expression and function of the two adiponectin receptors in human granulosa cells. METHODS: Granulosa cells were obtained at the time of oocyte retrieval in women undergoing in vitro fertilization (IVF). Cells were isolated and cultured for 48 h in DMEM/F12 medium with 5 % FBS and 50 ug/ml gentamicin. Medium was changed to low serum for 12 h and cells were treated with hCG (100 ng/ml), forskolin (30 μMol/L), or FSH (1 IU/ml) for 24 h for mRNA experiments. mRNA was isolated and RT PCR was performed using Taqman assays and quantification with the delta delta CT method. For immunocytochemistry, cells were grown on chamber slides and treated with hCG for 1 to 24 h and fixed with acetone. ICC was performed with polyclonal rabbit primary antibodies followed by alexa fluor goat anti-rabbit antibody and imaging with a fluorescence microscope and Zeiss software analysis. 3β-hydroxysteroid dehydrogenase (3βHSD) enzyme activity was determined by measuring the progesterone produced when cells were provided with an excess of 22-hydroxy-cholesterol as substrate following an incubation with hCG (1 IU/ml) and/or adiponectin (10 ng/ml). Progesterone content in the media was determined by ELISA. RESULTS: Messenger RNA for the two Adiponectin receptors is differentially regulated by activation of LHR with hCG treatment. AdipoR2 was increased nearly 4-fold (p < 0.05), whereas AdipoR1 expression was not changed by hCG treatment. Treatment with either FSH or forskolin (an activator of cAMP) had similar effects. Basal AdipoR2 protein was fairly low in granulosa cells in culture however treatment of cells with hCG resulted in a discernible increase in immunodetectable cytoplasmic protein as early as 6 h after treatment and was maintained for at least 24 h. The number of cells positive for AdipoR2 at 6 h increased from a basal of 20 % to almost 60 % (p < 0.05). Adiponectin treatment of hCG-primed cells resulted in increased 3βHSD activity by approximately 60 % over hCG alone and more than 3-fold over basal levels. CONCLUSIONS: AdipoR2 is regulated by the LH receptor function via a cAMP dependant mechanism. Increased expression of adipoR2 prior to and following ovulation may contribute to enhanced 3βHSD activity and increased progesterone secretion by the corpus luteum of the ovary. Dysregulation of adiponectin that may occur with PCOS may impair normal progesterone production

    Distinct sites of opiate reward and aversion within the midbrain identified using a herpes simplex virus vector expressing GluR1

    Get PDF
    Repeated administration of morphine increases expression of GluR1 (an AMPA glutamate receptor subunit) in the ventral tegmental area (VTA) of the midbrain, an important neural substrate for the rewarding actions of morphine. Microinjections of a herpes simplex virus (HSV) vector that causes local overexpression of GluR1 (HSV-GluR1) into the VTA can enhance the ability of morphine to establish conditioned place preferences, suggesting that altered GluR1 expression in this region is directly associated with changes in the rewarding efficacy of morphine. We now report that in rats given HSV-GluR1 directly into the VTA, morphine is most rewarding when maximal transgene expression is in the rostral VTA, whereas morphine is aversive when maximal transgene expression is in the caudal VTA. Dual-labeling immunohistochemistry shows that this difference cannot be explained by a different fraction of dopaminergic neurons infected in the rostral versus caudal VTA. No such anatomical specificity is seen in rats given VTA microinjections of HSV-LacZ, a vector expressing a control protein (beta-galactosidase). These results suggest that distinct substrates within the VTA itself differentially contribute to the rewarding and aversive properties of opiates

    Epigenetic suppression of hippocampal calbindin-D28k by ΔFosB drives seizure-related cognitive deficits.

    Get PDF
    The calcium-binding protein calbindin-D28k is critical for hippocampal function and cognition, but its expression is markedly decreased in various neurological disorders associated with epileptiform activity and seizures. In Alzheimer\u27s disease (AD) and epilepsy, both of which are accompanied by recurrent seizures, the severity of cognitive deficits reflects the degree of calbindin reduction in the hippocampal dentate gyrus (DG). However, despite the importance of calbindin in both neuronal physiology and pathology, the regulatory mechanisms that control its expression in the hippocampus are poorly understood. Here we report an epigenetic mechanism through which seizures chronically suppress hippocampal calbindin expression and impair cognition. We demonstrate that ΔFosB, a highly stable transcription factor, is induced in the hippocampus in mouse models of AD and seizures, in which it binds and triggers histone deacetylation at the promoter of the calbindin gene (Calb1) and downregulates Calb1 transcription. Notably, increasing DG calbindin levels, either by direct virus-mediated expression or inhibition of ΔFosB signaling, improves spatial memory in a mouse model of AD. Moreover, levels of ΔFosB and calbindin expression are inversely related in the DG of individuals with temporal lobe epilepsy (TLE) or AD and correlate with performance on the Mini-Mental State Examination (MMSE). We propose that chronic suppression of calbindin by ΔFosB is one mechanism through which intermittent seizures drive persistent cognitive deficits in conditions accompanied by recurrent seizures

    Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.

    Get PDF
    Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli

    Purple Bacteria

    Get PDF
    n/

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.

    Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model

    Get PDF
    Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. \noindent The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. \noindent The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded as separate file

    Phase-field approach to heterogeneous nucleation

    Full text link
    We consider the problem of heterogeneous nucleation and growth. The system is described by a phase field model in which the temperature is included through thermal noise. We show that this phase field approach is suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypotheses. Thus we can investigate the influence of grain boundaries, localized impurities, or any general kind of imperfections in a systematic way. We also put forward the applicability of our model to study other physical situations such as island formation, amorphous crystallization, or recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical Review
    corecore