25 research outputs found

    In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    Get PDF
    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching

    Computational modelling of wound healing insights to develop new treatments

    Get PDF
    About 1% of the population will suffer a severe wound during their life. Thus, it is really important to develop new techniques in order to properly treat these injuries due to the high socioeconomically impact they suppose. Skin substitutes and pressure based therapies are currently the most promising techniques to heal these injuries. Nevertheless, we are still far from finding a definitive skin substitute for the treatment of all chronic wounds. As a first step in developing new tissue engineering tools and treatment techniques for wound healing, in silico models could help in understanding the mechanisms and factors implicated in wound healing. Here, we review mathematical models of wound healing. These models include different tissue and cell types involved in healing, as well as biochemical and mechanical factors which determine this process. Special attention is paid to the contraction mechanism of cells as an answer to the tissue mechanical state. Other cell processes such as differentiation and proliferation are also included in the models together with extracellular matrix production. The results obtained show the dependency of the success of wound healing on tissue composition and the importance of the different biomechanical and biochemical factors. This could help to individuate the adequate concentration of growth factors to accelerate healing and also the best mechanical properties of the new skin substitute depending on the wound location in the body and its size and shape. Thus, the feedback loop of computational models, experimental works and tissue engineering could help to identify the key features in the design of new treatments to heal severe wounds

    Dynamic Tensile Properties of Human Skin

    No full text
    IRCOBI Conference 2012, 12 - 14 September 2012, Dublin (Ireland)The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. Studies have shown that the anisotropic effects of skin have been linked to sample orientation with respect to contour lines of tension, i.e. the Langer’s lines. There have been numerous studies undertaken to calculate the influence of Langer’s lines on the mechanical properties of human skin at quasistatic strain rates; however, it is relatively unknown what occurs at dynamic speeds. This study conducts a number of dynamic mechanical tensile tests to investigate the influence dynamic speeds have on the mechanical properties of human skin. The testing protocol involves uniaxial tensile tests at three different dynamic speeds, 1m/s, 1.5m/s and 2m/s, performed using an Instron tensile test machine. A total of 33 tests were conducted on 3 human cadavers aged 85, 77 and 82. Samples were excised at specific locations and orientations with respect to the Langer’s lines. The purpose for this was to recognise the significance that location and orientation have on the mechanical properties of human skin. The mean ultimate tensile strength (UTS) was 27.2±9.3MPa, the mean strain energy was 4.9±1.5MJ/m3, the mean elastic modulus was 98.97±97MPa and the mean failure strain was 25.45±5.07%. This new material data for human skin can be applied to constitutive models in areas such as impact biomechanics, forensic science and computer‐assisted surgery.Deposited by bulk import16/10/13 R

    Deficiencies in numerical models of anisotropic nonlinearly elastic materials

    No full text
    Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson's ratio' close to the perfect incompressibility limit of 1/2 are made
    corecore