1,248 research outputs found

    The prevalence of metabolic syndrome amongst patients with severe mental illness in the community in Hong Kong--a cross sectional study

    Get PDF
    Background: Patients with severe mental illness are at increased risk of developing metabolic disorders. The risk of metabolic syndrome in the Hong Kong general population is lower than that observed in western countries; however the prevalence of metabolic syndrome in patients with severe mental illness in Hong Kong is unknown. Method: This cross-sectional study aimed to estimate the prevalence of metabolic syndrome in patients with severe mental illness in Hong Kong and to identify the relationships between metabolic syndrome and socio-demographic, clinical and lifestyle factors. Results: A total of 139 patients with a diagnosis of severe mental illness participated in the study. The unadjusted prevalence of metabolic syndrome was 35%. The relative risk of metabolic syndrome in comparison with the general Hong Kong population was 2.008 (95% CI 1.59-2.53, p < 0.001). In a logistic regression model sleep disruption and being prescribed first generation antipsychotics were significantly associated with the syndrome, whilst eating less than 3 portions of fruit/vegetables per day and being married were weakly associated. Conclusion The results demonstrate that metabolic syndrome is highly prevalent and that physical health inequalities in patients with severe mental illness in Hong Kong are similar to those observed in western countries. The results provide sufficient evidence to support the need for intervention studies in this setting and reinforce the requirement to conduct regular physical health checks for all patients with severe mental illness

    DNA charge transport as a first step in coordinating the detection of lesions by repair proteins

    Get PDF
    Damaged bases in DNA are known to lead to errors in replication and transcription, compromising the integrity of the genome. We have proposed a model where repair proteins containing redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in finding lesions. In this model, the population of sites to search is reduced by a localization of protein in the vicinity of lesions. Here, we examine this model using single-molecule atomic force microscopy (AFM). XPD, a 5′-3′ helicase involved in nucleotide excision repair, contains a [4Fe-4S] cluster and exhibits a DNA-bound redox potential that is physiologically relevant. In AFM studies, we observe the redistribution of XPD onto kilobase DNA strands containing a single base mismatch, which is not a specific substrate for XPD but, like a lesion, inhibits CT. We further provide evidence for DNA-mediated signaling between XPD and Endonuclease III (EndoIII), a base excision repair glycosylase that also contains a [4Fe-4S] cluster. When XPD and EndoIII are mixed together, they coordinate in relocalizing onto the mismatched strand. However, when a CT-deficient mutant of either repair protein is combined with the CT-proficient repair partner, no relocalization occurs. These data not only indicate a general link between the ability of a repair protein to carry out DNA CT and its ability to redistribute onto DNA strands near lesions but also provide evidence for coordinated DNA CT between different repair proteins in their search for damage in the genome

    ATP-Stimulated, DNA-Mediated Redox Signaling by XPD, a DNA Repair and Transcription Helicase

    Get PDF
    Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signal is substrate-dependent, reports on the DNA conformational changes associated with enzymatic function, and may reflect a general biological role for DNA charge transport

    Charge distribution uncertainty in differential mobility analysis of aerosols

    Get PDF
    The inference of particle size distributions from differential mobility analyzer (DMA) data requires knowledge of the charge distribution on the particles being measured. The charge distribution produced by a bipolar aerosol charger depends on the properties of the ions produced in the charger, and on the kinetics of charge transfer from molecular ions or ion clusters to the particles. A single parameterization of a theoretically predicted charge distribution is employed in most DMA analyses regardless of the atmospheric conditions being probed. Deviations of the actual charge distribution from that assumed in the data analysis will bias the estimated particle size distribution. We examine these potential biases by modeling measurements and data inversion using charge distributions calculated for a range of atmospheric conditions. Moreover, simulations were performed using the ion-to-particle flux coefficients predicted for a range of properties of both the particles and ions. To probe the biases over the full range of particle sizes, the measurements were simulated through an atmospheric new particle formation event. The differences between the actual charge distribution and that according to the commonly used parametrization resulted in biases as large as a factor of 5 for nucleation-mode particles, and up to 80% for larger particles. Incorrect estimates of the relative permittivity of the particles or not accounting for the temperature and pressure effects for measurements at 10 km altitude produced biases in excess of 50%; three-fold biases result from erroneous estimates of the ion mobility distribution. We further report on the effects of the relative permittivity of the ions, the relative concentrations of negative and positive ions, and truncation of the number of charge states considered in the inversion

    Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols

    Get PDF
    Recent work has demonstrated that organic and mixed organic–inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particle-phase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic–inorganic aerosol systems with physical states ranging from well-mixed liquids to phase-separated particles to viscous liquids or semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 40 to 90%. Water-uptake measurements were accompanied by HGF and RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. In addition, AIOMFAC-predicted growth curves are compared to several simplified HGF modeling approaches: (1) representing particles as ideal, well-mixed liquids; (2) forcing a single phase but accounting for non-ideal interactions through activity coefficient calculations; and (3) a Zdanovskii–Stokes–Robinson-like calculation in which complete separation of the inorganic and organic components is assumed at all RH values, with water uptake treated separately in each of the individual phases. We observed variability in the characteristics of measured hygroscopic growth curves across aerosol systems with differing phase behaviors, with growth curves approaching smoother, more continuous water uptake with decreasing prevalence of liquid–liquid phase separation and increasing oxygen : carbon ratios of the organic aerosol components. We also observed indirect evidence for the dehydration-induced formation of highly viscous semi-solid phases and for kinetic limitations to the crystallization of ammonium sulfate at low RH for sucrose-containing particles. AIOMFAC-predicted growth curves are generally in good agreement with the HGF measurements. The performances of the simplified modeling approaches, however, differ for particles with differing phase states. This suggests that no single simplified modeling approach can be used to capture the water-uptake behavior for the diversity of particle-phase behavior expected in the atmosphere. Errors in HGFs calculated with the simplified models are of sufficient magnitude to produce substantial errors in estimates of particle optical and radiative properties, particularly for the assumption that water uptake is driven by absorptive equilibrium partitioning with ideal particle-phase mixing

    Neofusicoccum ribis associated with leaf blight on rubber (Hevea brasiliensis) in Peninsular Malaysia

    Get PDF
    Hevea brasiliensis is a natural source of rubber and an important plantation tree species in Malaysia. Leaf blight disease caused by Fusicoccum substantially reduces the growth and performance of H. brasiliensis. The aim of this study was to use a combination of both morphological characteristics and molecular data to clarify the taxonomic position of the fungus associated with leaf blight disease. Fusicoccum species were isolated from infected leaves collected from plantations at 3 widely separated locations - Selangor, Perak, and Johor states - in Peninsular Malaysia in 2010. All the isolates were identified according to their conidial patterns and DNA sequences generated from internal transcribed spacers (ITS1 and ITS2), the 5.8S rRNA, and an unknown locus (BotF15) containing microsatellite repeats. Based on taxonomic and sequence data, Neofusicoccum ribis was identified as the main cause of leaf blight disease in H. brasiliensis in commercial plantations in Malaysia. A pathogenicity trial on detached leaves further confirmed that N. ribis causes leaf blight disease. N. ribis is an important leaf pathogen, and its detection in Malaysia has important implications for future planting of H. brasiliensis

    Ion Mobility-Mass Spectrometry with a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC)

    Get PDF
    The first application of a novel differential mobility analyzer, the radial opposed migration ion and aerosol classifier (ROMIAC), is demonstrated. The ROMIAC uses antiparallel forces from an electric field and a cross-flow gas to both scan ion mobilities and continuously transmit target mobility ions with 100% duty cycle. In the ROMIAC, diffusive losses are minimized, and resolution of ions, with collisional cross-sections of 200–2000 Å^2, is achieved near the nondispersive resolution of ~20. Higher resolution is theoretically possible with greater cross-flow rates. The ROMIAC was coupled to a linear trap quadrupole mass spectrometer and used to classify electrosprayed C2–C12 tetra-alkyl ammonium ions, bradykinin, angiotensin I, angiotensin II, bovine ubiquitin, and two pairs of model peptide isomers. Instrument and mobility calibrations of the ROMIAC show that it exhibits linear responses to changes in electrode potential, making the ROMIAC suitable for mobility and cross-section measurements. The high resolution of the ROMIAC facilitates separation of isobaric isomeric peptides. Monitoring distinct dissociation pathways associated with peptide isomers fully resolves overlapping peaks in the ion mobility data. The ability of the ROMIAC to operate at atmospheric pressure and serve as a front-end analyzer to continuously transmit ions with a particular mobility facilitates extensive studies of target molecules using a variety of mass spectrometric methods

    Relationships between canopy Size and aboveground biomass of oil palms: an evaluation of allometric models

    Get PDF
    Oil palms (OP) in Sabah, Malaysia were studied to explore the relationship between canopy size and aboveground biomass (AGB). Four available allometric equations were used to calculate the dry AGB. Pearson’s correlation analysis was performed between crown diameter (CD) and crown area (CA) towards the variables of AGB, height and dbh. In this analysis, the transformation to natural log of variable resulted in better coefficient compared to the original one. The mean of various variables such as height (stem, total and height difference), biomass (crown, trunk and total), dbh (inner and outer) and number of petiole leaf were calculated based on 32 independent sample plots (N = 222 palms) across various age stages from 2 to 24 years. These variables were regressed against CD and age. AGB versus CD was a nonlinear with R2 ranging from 0.950 to 0.975. Random modelling and cross validation between AGB and CD was applied at the ratio of 70:30. Upon checking, the best estimation was achieved by using the allometric equation based on total height due to the lowest relative root mean square error (RMSE) (18.5%) and the least fluctuation between predicted and actual AGB. The other three models had relative RMSE that ranged between 23.9 and 68.8%. This study shows that AGB can be estimated using CD of OP consistently at all age

    A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells

    Get PDF
    Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide–major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the immunodominant human leukocyte antigen (HLA)-B2705–restricted HIV-1 Gag KK10 epitope (KRWIILGLNK) with an L to M amino acid substitution at position 6 (L6M), which arises as a CTL escape variant after primary infection but is sufficiently immunogenic to elicit a secondary, de novo HIV-1–specific CD8+ T cell response with an alternative TCR repertoire in chronic infection. In addition to altering recognition by HIV-1–specific CD8+ T cells, the HLA-B2705–KK10 L6M complex also exhibits substantially increased binding to the immunoglobulin-like transcript (ILT) receptor 4, an inhibitory MHC class I–specific receptor expressed on myelomonocytic cells. Binding of the B2705–KK10 L6M complex to ILT4 leads to a tolerogenic phenotype of myelomonocytic cells with lower surface expression of dendritic cell (DC) maturation markers and co-stimulatory molecules. These data suggest a link between CTL-driven mutational escape, altered recognition by innate MHC class I receptors on myelomonocytic cells, and functional impairment of DCs, and thus provide important new insight into biological consequences of viral sequence diversificatio
    corecore