4,110 research outputs found
Color and texture associations in voice-induced synesthesia
Voice-induced synesthesia, a form of synesthesia in which synesthetic perceptions are induced by the sounds of people's voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synesthetic color and visual texture perceptions experienced in response to different types of “voice quality” (e.g., nasal, whisper, falsetto). Experiences of three different groups—self-reported voice synesthetes, phoneticians, and controls—were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synesthetes used more color and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colors, the matching of “whispery” voices with smoke-like textures, and the matching of “harsh” and “creaky” voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synesthesia, especially in cases where individuals apparently have a range of different synesthetic inducers
Observations of the Io plasma torus
The short wavelength spectrography on the IUE satellite was used to obtain spectra of the plasma torus near the orbit of Io about Jupiter. Three exposures of about 8 hours each taken in March and May 1979 show emission features due to SII, SIII, and OIII. The absence of features at other wavelengths permits upper limits to be other species in the torus
CIS-lunar space infrastructure lunar technologies: Executive summary
Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program
Jovian equatorial H2 emission from 1979-1987
Ninety two IUE observations of the Jovian equatorial region taken between 2 Dec. 1978 and 1 Feb. 1988 were averaged together by date of observation, resulting in 22 averaged spectra which were fit with a model to determine the amount of H2 Lyman band emission in the region 1552 to 1624A. The data suggest that the H2 emission may vary with time. Especially suggestive is the marked downward trend of the emission between 1983 and 1987, during which time the strength of the emission in the 1552 to 1624A region decreases by a factor of 10. Uncertainty in the existing data and a gap in the data in 1980 and 1981 preclude a positive identification of a correlation between the brightness of the H2 emission and the major solar cycle
Testing Binary Population Synthesis Models with Hot Subdwarfs
Models of binary star interactions have been successful in explaining the
origin of field hot subdwarf (sdB) stars in short period systems, but
longer-period systems that formed via Roche-lobe overflow (RLOF) mass transfer
from the present sdB to its companion have received less attention. We map sets
of initial binaries into present-day binaries that include sdBs and
main-sequence stars, distinguishing "observable" sdBs from "hidden" ones. We
aim to find out whether (1) the existing catalogues of sdBs are sufficiently
fair samples of all the kinds of sdB binaries that theory predicts; or instead
whether (2) large predicted hidden populations mandate the construction of new
catalogues, perhaps using wide-field imaging surveys such as 2MASS, SDSS, and
Galex. We also report on a pilot study to identify hidden subdwarfs, using
2MASS and GALEX data.Comment: 3 pages with 2 figures. Uses AIP style files. To appear in Future
Directions in Ultraviolet Astronomy, ed. Michael E. VanSteenberg (AIP Conf
Proc
Coupled opto-electronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis
A general problem arising in computer simulations is the number of material
and device parameters, which have to be determined by dedicated experiments and
simulation-based parameter extraction. In this study we analyze measurements of
the short-circuit current dependence on the active layer thickness and
current-voltage curves in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid
methyl ester (P3HT:PCBM) based solar cells. We have identified a set of
parameter values including dissociation parameters that describe the
experimental data. The overall agreement of our model with experiment is good,
however a discrepancy in the thickness dependence of the current-voltage curve
questions the influence of the electric field in the dissociation process. In
addition transient simulations are analyzed which show that a measurement of
the turn-off photocurrent can be useful for estimating charge carrier
mobilities.Comment: 10 pages, 12 figures, 2 tables, Accepted for publication in Journal
of Applied Physic
Observations of polar aurora on Jupiter
North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed
Forbidden transitions in the helium atom
Nonrelativistically forbidden, single-photon transition rates between low
lying states of the helium atom are rigorously derived within quantum
electrodynamics theory. Equivalence of velocity and length gauges, including
relativistic corrections is explicitly demonstrated. Numerical calculations of
matrix elements are performed with the use of high precision variational wave
functions and compared to former results.Comment: 11 pages, 1 figure, submitted to Phys. Rev.
Electronic structure and dynamics of optically excited single-wall carbon nanotubes
We have studied the electronic structure and charge-carrier dynamics of
individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using
optical and electron-spectroscopic techniques. The electronic structure of
semiconducting SWNTs in the band-gap region is analyzed using near-infrared
absorption spectroscopy. A semi-empirical expression for
transition energies, based on tight-binding calculations is found to give
striking agreement with experimental data. Time-resolved PL from dispersed
SWNT-micelles shows a decay with a time constant of about 15 ps. Using
time-resolved photoemission we also find that the electron-phonon ({\it e-ph})
coupling in metallic tubes is characterized by a very small {\it e-ph}
mass-enhancement of 0.0004. Ultrafast electron-electron scattering of
photo-excited carriers in nanotube ropes is finally found to lead to internal
thermalization of the electronic system within about 200 fs.Comment: 10 pages, 10 figures, submitted to Applied Physics
- …
