794 research outputs found

    Chemical Range of Stability for Self-Dusting Ladle Furnace Slags and Destabilizing Effect of Sulfur

    Get PDF
    Ladle furnace slags are characterized by volumetric expansions associated with the transition of dicalcium silicate (C2S) from β to γ phase, which generates fine dust during cooling, causing handling and storage issues that further reduce their recycling opportunities. The present work focuses on the effect of slag basicity on dusting and the role of sulfur on slag stability. Seven synthetic ladle slag precursors were made by mixing lime, magnesia, quartz and alumina in different proportions to match effective industrial compositions, increasing the binary basicity and keeping the ternary and quaternary indexes unchanged. Samples were heated to 1500 Â°C for 15 min and monitored during air cooling (< 5 Â°C/s) through thermocouples and camera to characterize the behavior, temperature, and time interval of dusting. The cooled samples were characterized chemically, mineralogically and morphologically. Starting from the chemistry of a self-stabilized slag, five additional slag precursors, characterized by increasing amounts of S, were created and analyzed using the same procedures. Experimental evidence showed the presence of three different dusting behaviors (stable, partial and complete) and stabilization of the slag once an optical basicity of 0.748 or higher was reached. In addition, mayenite was identified as the main phase capable of suppressing the β to γ transition by exerting hydrostatic pressure on C2S. Finally, although S can stabilize the β phase when dissolved in it, after saturation it precipitates as CaS, which can react with mayenite, locally decreasing the optical basicity and allowing dusting. Graphical Abstract: [Figure not available: see fulltext.]

    Processing and characterization of dual phase steel foam

    Get PDF
    Porous materials featuring cellular structures are known to have many interesting combinations of physical and mechanical properties. Some of them have been extensively used in the transportation field (i.e. balsa wood). Steel foams presented promising theoretical properties for both functional and structural applications in transportation, but processing of such a kind of foams is complex due to their high melting point. Recently a technique for processing Cu-based alloys open-cell foams through the molten metal infiltration of a leachable bed of amorphous SiO2 particles was proposed. A variation of the proposed technique that uses SiC particles as space holder is now presented and was recently successfully applied for dual phase steel foam processing. Results from a processing of dual phase DP500 steel foams, including some morphological, micro-structural and mechanical characterization, are here presented

    Characterization and Comparison of Single VAR-Remelted and Double VAR-Remelted Ingots of INCOLOY ® Alloy 925

    Get PDF
    Alloy 925 is a nickel-based superalloy usually produced by Electric Arc Furnace (EAF), followed by Argon Oxygen Decarburization (AOD) and Vacuum Arc Remelting (VAR). It can undergo to one VAR remelting (EAF-AOD-VAR) or, if necessary due to process instabilities, two VAR remelting (EAF-AOD-VAR-VAR). The characterization of A925 ingots remelted one or two times after forging and aging was carried out to enhance differences. The VAR remelting rate of single- or double-remelted samples was correlated to metallurgical and mechanical properties. The microstructure observation revealed a higher quantity of MC, M23C6 and TiN precipitates (both inter- and intragranular) in single-remelted samples: the intergranular ones increase in quantity going from the ingot center position to the external one where cluster of titanium nitrides were detected. The higher presence of intergranular precipitates causes a high deterioration of impact toughness (71.1 ± 12.7 vs 90.5 ± 7.1 J) and lateral expansion (0.91 ± 0.18 vs 1.14 ± 0.07 mm). On the other hand, the number of remelting does not affect other tensile properties and hardness. Therefore, the different behavior of forged ingots at single and double remelting are not related to the number of remelting and remelting rate. On the other hand, the slightly lower toughness of single-remelted forged ingots can be corelated to defects derived from casting

    Mechanical and tribo-metallurgical behavior of 17-4 precipitation hardening stainless steel affected by severe cold plastic deformation: a comprehensive review article

    Get PDF
    This article comprehensively reviews the mechanical properties and tribo-metallurgical behavior of 17-4 precipitation hardening stainless steel (17-4PH SS) during and after cold plastic deformation. Referring to the scientific literature, stainless steels are one of the few types of ferrous alloys which could be appropriately set up through cold working processes in the forms of sheets or other shapes. Likewise, some other metal alloys such as mild low-carbon-based steels, copper and its alloys, aluminum alloys, and some others are the few types of metal alloys which have this capability. On the other hand, in engineering applications, there are several types of mechanical failures, which must be taken into account to investigate the mechanical behavior and tribo-metallurgical properties of any targeted materials. For example, corrosion resistance, wear resistance, and fatigue failure are investigated according to the microstructural studies, comprising of the grain size, grain boundaries, orientations, dislocations, and so on. Based on the published results, focusing on 17-4PH SS, one of the most main effective factors on mechanical and tribo-metallurgical performance is the grain size. Also, the favorable balance of two mechanical properties of strength and ductility has been reported as a dilemma in the materials science, and the problem delineates upon the limitations of numerous structural materials potentials. Following the failure analysis of the materials, in order to diminish the damages caused by fretting fatigue some methods such as ultrasonic processes are applied for the treatment of 17-4PH SS via changing the microstructure, residual stress, and other parameters. Also, through the other cold deformation technologies, the nanostructured surface layer with highly upgraded mechanical properties of several ultrasonic surface rolling process-treated 17-4PH SS has been obtained. To this end, such cold working processes on 17-4PH SS and their subsequent results are elaborated in this review paper. Graphical abstract: [Figure not available: see fulltext.

    Therapeutic effects of chlorhexidine digluconate (CHX) in laborers with untreated gingivitis

    Get PDF
    published_or_final_versio

    Presence of A. actinomycetemcomitans and P. gingivalis in young Chinese adults

    Get PDF
    published_or_final_versio

    Microstructural investigation on an Al 6061 T6 alloy subjected to ballistic impact C

    Get PDF
    Ballistic impact generates significant modifications in the microstructural patterns. High strain rate and local high temperature conditions work together in opposite way: the first causes strain hardening, while the second factor produces softening. Moreover, after the impact, the cooling process is responsible of other local modifications on the arrangement of dislocations and precipitates. Therefore an experimental analysis on Al 6061 T6 cut from the edge of a component subjected to ballistic impact has been carried on in order to investigate on the microstructural modifications. Considerations about the influence on the mechanical behavior and on the fracture propagation are reported. The crystallographic textures and the misorientation featuring the grains play in fact a significant role in the fracture mechanism. The comparison between the texture situation before and after the impact can allow to evaluate the localized straining of the material and to point out its dissipation efficiency as a function of the distance from the damaged surfaces © 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM1

    Thermodynamics of a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying the middle of the links). This study is motivated by the description of a recently synthesized molecular magnetic compound. First, we trace out the spin 1/2 degrees of freedom to obtain a fully classical model with an effective ferromagnetic interaction. Then, using high temperature expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We show that it provides a good quantitative description of the magnetic susceptibility of the molecular magnet in its paramagnetic phase.Comment: Revtex, 6 pages, 4 included postscript figures, fig.1 upon request to [email protected] . To appear in J. of Physic C (condensed matter

    Assessing Sleep Habits in Italian Community-Dwelling Adolescents: Psychometric Properties of the School Sleep Habits Survey Scales

    Get PDF
    Background. In the field of adolescent sleep research, different sleep surveys have been implemented; however, psychometric properties of these instruments have been investigated only minimally. Methods. In order to assess the psychometric properties of the Sleep-Wake Problems Behaviour Scale (SWP), the Sleepiness Scale (SLS), and the Morningness/Eveningness Questionnaire (ME), a moderately large sample of community-dwelling Italian adolescents (N = 778; 59.8% female; mean age = 15.77 years) was administered the Italian translation of the School Sleep Habits Survey. Results. Internal consistency estimates values were satisfactory for all measures; dimensionality analyses suggested a unidimensional structure for SWP, SLS and ME, respectively. Goodness-of-fit statistics for the one-factor model of the SLS, SWP, and ME scale items were adequate for all measures. Non -redundant taxometric analysis results consistently suggested a dimensional latent structure for the SLS, SWP, and ME, respectively. Conclusion. Our findings supported the use of the SLS, SWP, and ME total scores as measures of sleepiness, sleep-wake problem, and morningness/eveningness, at least among Italian community -dwelling adolescents, and encourage practitioners to rely on the conventional percentiles in order to interpret the SLS, SWP, and ME total scores

    Produzione e caratterizzazione di schiume metalliche in acciaio dual phase

    Get PDF
    Con l’intento di ampliare il panorama dei lavori e delle ricerche riguardanti le schiume metalliche, oggi piùche mai di grande interesse per diversi settori industriali, e di aumentare la lista dei materiali utilizzati, adoggi formata prevalentemente da leghe leggere, sono state prodotte e caratterizzate delle schiume metalliche inacciaio dual phase, mettendo a punto un processo produttivo dedicato, modificando le caratteristiche di unmetodo in uso a livello industriale, noto come DUOCELL® Process. La caratterizzazione metallurgica emeccanica ha dimostrato come il metodo utilizzato sia efficace per produrre schiume in materiale altofondente con densità relativa pari al 0,6. Sono stati studiati gli effetti della temperatura di tempra intercriticasulla percentuale di martensite presente in struttura e sono state comparate tra loro tre diverse porosità aparità di densità relativa. Sono stati inoltre posti a confronto due acciai a diversa composizione chimica perverificare gli effetti degli elementi di lega sulla struttura dual phase ottenibile
    • …
    corecore