57 research outputs found

    Evolutionary Constraints in the b-Globin Cluster: The Signature of Purifying Selection at the d-Globin (HBD) Locus and Its Role in Developmental Gene Regulation

    Get PDF
    Human hemoglobins, the oxygen carriers in the blood, are composed by two α-like and two β-like globin monomers. The β-globin gene cluster located at 11p15.5 comprises one pseudogene and five genes whose expression undergoes two critical switches: the embryonic-to-fetal and fetal-to-adult transition. HBD encodes the δ-globin chain of the minor adult hemoglobin (HbA2), which is assumed to be physiologically irrelevant. Paradoxically, reduced diversity levels have been reported for this gene. In this study, we sought a detailed portrait of the genetic variation within the β-globin cluster in a large human population panel from different geographic backgrounds. We resequenced the coding and noncoding regions of the two adult β-globin genes (HBD and HBB) in European and African populations, and analyzed the data from the β-globin cluster (HBE, HBG2, HBG1, HBBP1, HBD, and HBB) in 1,092 individuals representing 14 populations sequenced as part of the 1000 Genomes Project. Additionally, we assessed the diversity levels in nonhuman primates using chimpanzee sequence data provided by the PanMap Project. Comprehensive analyses, based on classic neutrality tests, empirical and haplotype-based studies, revealed that HBD and its neighbor pseudogene HBBP1 have mainly evolved under purifying selection, suggesting that their roles are essential and nonredundant. Moreover, in the light of recent studies on the chromatin conformation of the β-globin cluster, we present evidence sustaining that the strong functional constraints underlying the decreased contemporary diversity at these two regions were not driven by protein function but instead are likely due to a regulatory role in ontogenic switches of gene expression

    Strategies to manage anterior disc displacement without reduction of temporomandibular joint: a case report

    Get PDF
    Abstract in proceedings of the Fourth International Congress of CiiEM: Health, Well-Being and Ageing in the 21st Century, held at Egas Moniz’ University Campus in Monte de Caparica, Almada, from 3–5 June 2019.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.info:eu-repo/semantics/publishedVersio

    Benefits of condylar distraction in patients with temporomandibular dysfunction

    Get PDF
    Poster presented at the 4th International Congress of CiiEM - Health, Well-being and Ageing in the XXI Century. 2-5 June 2019, Campus Egas Moniz, Monte de Caparica, PortugalN/

    Novel downstream process and analytical tools developed for Influenza VLP vaccine

    Get PDF
    Vaccination remains the most effective way to prevent the infection with Influenza viruses. However, their constant antigenic drift implies that current human Influenza vaccines need to be annually updated with high inherent costs. Virus-like particles (VLPs) have become widely used as vaccine candidates because of their versatility, immunogenicity, and safety profile. In this iBET project we are attempting to produce a candidate for a universal vaccine for which 35 different VLPs (mono, trivalent and pentavalent) were purified. Here we describe three recent advances on Influenza VLPs bioprocessing: two new analytical tools and the development of an integrated all filtration purification process, inserted in the “anything but chromatography” concept. The first method is a label-free tool that uses Biolayer interferometry technology applied on an Octet platform to quantify Influenza VLPs at all stages of DSP. Human and avian sialic acid receptors were used, in order to quantify hemagglutinin (HA) content in several mono- and multivalent Influenza VLP strains. The applied method was able to detect and quantify HA from crude sample up to final VLP product with high throughput, real-time results and improved detection limits, when compared to traditional approaches, crucial for in-line monitoring of DSP. Using a click-chemistry approach that involves Azidohomoalanine incorporation and functionalization, Influenza VLPs were selectively and fluorescently tagged. Taking into account that this chemical tag does not affect particle size, charge and biological activity we report here a valuable tool to online/at-line product monitoring during DSP optimization of virus related biopharmaceuticals. Moreover, using this tool coupled with FACS we were able to discriminate between VLPs and baculovirus, the major impurity of the system. The proposed all-filtration process will be described, with special focus on the clarification stage, followed by multiple ultrafiltration and diafiltration steps to achieve the needed concentration and purity specifications. Using this all-filtration platform, we are able to speed up the time process, to improve the scale-up and to reduce costs due to the removal of chromatographic steps

    GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment

    Get PDF
    The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies

    Microenvironmental IL1 1 β promotes metastatic colonisation of breast cancer cells in the bone via activation of Wnt-dependent cancer stem cell activity

    Get PDF
    Dissemination of tumour cells to the bone marrow is an early event in breast cancer, however cells may lie dormant for many years before bone metastases develop. Treatment for bone metastases is not curative, therefore new adjuvant therapies which prevent the colonisation of disseminated cells into metastatic lesions are required. There is evidence that cancer stem cells (CSCs) within breast tumours are capable of metastasis, but the mechanism by which these colonise bone is unknown. Here, we establish that bone marrow-derived IL1β stimulates breast cancer cell colonisation in the bone by inducing intracellular NFkB and CREB signalling in breast cancer cells, leading to autocrine Wnt signalling and CSC colony formation. Importantly, we show that inhibition of this pathway prevents both CSC colony formation in the bone environment, and bone metastasis. These findings establish that targeting IL1β-NFKB/CREB-Wnt signalling should be considered for adjuvant therapy to prevent breast cancer bone metastasis

    MCL-1 is a prognostic indicator and drug target in breast cancer

    Get PDF
    Analysis of publicly available genomic and gene expression data demonstrates that MCL1 expression is frequently elevated in breast cancer. Distinct from other pro-survival Bcl-2 family members, the short half-life of MCL-1 protein led us to investigate MCL-1 protein expression in a breast cancer tissue microarray and correlate this with clinical data. Here, we report associations between high MCL-1 and poor prognosis in specific subtypes of breast cancer including triple-negative breast cancer, an aggressive form that lacks targeted treatment options. Deletion of MCL-1 in the mammary epithelium of genetically engineered mice revealed an absolute requirement for MCL-1 in breast tumorigenesis. The clinical applicability of these findings was tested through a combination of approaches including knock-down or inhibition of MCL-1 to show triple-negative breast cancer cell line dependence on MCL-1 in vitro and in vivo. Our data demonstrate that high MCL-1 protein expression is associated with poor outcome in breast cancer and support the therapeutic targeting of MCL-1 in this disease

    Decreased expression of Yes-associated protein is associated with outcome in the luminal A breast cancer subgroup and with an impaired tamoxifen response

    Get PDF
    Background: Yes-associated protein (YAP1) is frequently reported to function as an oncogene in many types of cancer, but in breast cancer results remain controversial. We set out to clarify the role of YAP1 in breast cancer by examining gene and protein expression in subgroups of patient material and by downregulating YAP1 in vitro and studying its role in response to the widely used anti-estrogen tamoxifen. Methods: YAP1 protein intensity was scored as absent, weak, intermediate or strong in two primary breast cancer cohorts (n = 144 and n = 564) and mRNA expression of YAP1 was evaluated in a gene expression dataset (n = 1107). Recurrence-free survival was analysed using the log-rank test and Cox multivariate analysis was used to test for independence. WST-1 assay was employed to measure cell viability and a luciferase ERE (estrogen responsive element) construct was used to study the effect of tamoxifen, following downregulation of YAP1 using siRNAs. Results: In the ER+ (Estrogen Receptor a positive) subgroup of the randomised cohort, YAP1 expression was inversely correlated to histological grade and proliferation (p = 0.001 and p = 0.016, respectively) whereas in the ER-(Estrogen Receptor a negative) subgroup YAP1 expression correlated positively to proliferation (p = 0.005). Notably, low YAP1 mRNA was independently associated with decreased recurrence-free survival in the gene expression dataset, specifically for the luminal A subgroup (p less than 0.001) which includes low proliferating tumours of lower grade, usually associated with a good prognosis. This subgroup specificity led us to hypothesize that YAP1 may be important for response to endocrine therapies, such as tamoxifen, extensively used for luminal A breast cancers. In a tamoxifen randomised patient material, absent YAP1 protein expression was associated with impaired tamoxifen response which was significant upon interaction analysis (p = 0.042). YAP1 downregulation resulted in increased progesterone receptor (PgR) expression and a delayed and weaker tamoxifen in support of the clinical data. Conclusions: Decreased YAP1 expression is an independent prognostic factor for recurrence in the less aggressive luminal A breast cancer subgroup, likely due to the decreased tamoxifen sensitivity conferred by YAP1 downregulation

    Relative frequency of known causes of multiple mtDNA deletions: two novel POLG mutations

    No full text
    Diseases affecting mtDNA stability, termed nuclear–mitochondrial intergenomic communication disorders, are caused by a primary nuclear gene defect resulting in multiple mtDNA deletions. The aim of this study was to estimate the frequency of known etiologies and the spectrum of mutations in a cohort of 21 patients harboring multiple mtDNA deletions in skeletal muscle. We showed that 10 cases (48%) display mutations in POLG, including eight previously reported variants and two novel mutations (namely, p.Trp585X and p.Arg1081Gln). The novel mutations affect evolutionary conserved residues and were absent in a large set of control chromosomes. These findings expand the array of mutations associated with multiple rearranged mtDNA attributed to mutations in POLG. The relatively high diagnostic yield (about one in two cases) supports the notion that it is recommended to test POLG routinely in diagnostic laboratories whenever multiple mtDNA deletions are present, regardless of the age of onset of patients and their clinical phenotype
    corecore