66 research outputs found
Recommended from our members
A goldilocks computational protocol for inhibitor discovery targeting DNA damage responses including replication-repair functions
While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology. Our GL pipeline integrates experimental and predicted structures to efficiently discover leads, allowing early-structure and early-testing (ESET) experiments by many laboratories. By employing an efficient VS protocol to examine protein-protein interfaces (PPIs) and allosteric interactions, we identify ligand binding sites beyond active sites, leveraging in silico advances for molecular docking and modeling to screen PPIs and multiple targets. A diverse 3,174 compound ESET library combines Diamond Light Source DSI-poised, Protein Data Bank fragments, and FDA-approved drugs to span relevant chemotypes and facilitate downstream hit evaluation efficiency for academic laboratories. Two VS per library and multiple ranked ligand binding poses enable target testing for several DDR targets. This GL library and protocol can thus strategically probe multiple DDR network targets and identify readily available compounds for early structural and activity testing to overcome bottlenecks that can limit timely breakthrough drug discoveries. By testing accessible compounds to dissect multi-functional DDRs and suggesting inhibitor mechanisms from initial docking, the GL approach may enable more groups to help accelerate discovery, suggest new sites and compounds for challenging targets including emerging biothreats and advance cancer biology for future precision medicine clinical trials
Chemical Screening by Time-Resolved X-Ray Scattering To Discover Allosteric Probes
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (
Recommended from our members
Using Supercomputing Resources in Genomic Research
TACC resources have proven to be critical and enabling to mine cancer genomic data, genomic variants associated with human disease and polymorphic human traits, addressing biological questions otherwise non-approachable by conventional experiments. We have developed computational scripts that we use in a parallel environment to harness the capabilities of TACC HPCs, and which we have made publicly available on GitHub. In selected peer-review publications acknowledging TACC support, we have reported the association of DNA sequences able to form alternative DNA structures (or non-B DNA) with sites of chromosomal breaks leading to gross chromosomal translocations in cancer genomes, with sites of gene duplication predisposing to Parkinson’s disease, and most recently with regions of increased polymorphism in the human population. We found an exquisite correlation between the expression of selected genes and the mutational burden in cancer patients. While solving the crystal structure of a poorly characterized exonuclease, named EXO5, TACC resources enabled the assignment of a role for EXO5 in the cellular response to DNA damage, a vital pathway used by tumors to survive and grow, along with key genes whose high expression is linked to poor survival in cancer patients. Most recently, during the discovery of a nuclear role for GRB2, an adaptor protein previously thought to act only in the cytoplasm, TACC resources enabled us to test hypotheses derived from laboratory data. We were gratified to confirm the laboratory prediction that high expression of GRB2, together with its binding partner the MRE11 nuclease, carries accurate prognostic power for poor patient survival in breast cancer patients proficient in DNA homology-directed repair. These composite findings, significantly facilitated by TACC resources, have been critical to further our understanding in biological processes relevant to human disease, and to provide knowledge for the development of more precise therapeutic tools aimed at improving human health
Recommended from our members
Chemical screening by time-resolved X-ray scattering to discover allosteric probes
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (kVR), capture structure-activity relationships (SAR) across the top-ranked 4-aminoquinoline chemotype. Crystallized AIF-aminoquinoline complexes validate TR-SAXS-guided SAR, supporting this conformational chemotype for optimization. AIF-aminoquinoline structures and mutational analysis reveal active site F482 as an underappreciated allosteric stabilizer of AIF dimerization. This conformational discovery pipeline illustrates TR-HT-SAXS as an effective technology for targeting chemical leads to important macromolecular states
PRC2 is dispensable for HOTAIR-mediated transcriptional repression
Long non-coding RNAs (lncRNAs) play diverse roles in physiological
and pathological processes. Several lncRNAs have been suggested
to modulate gene expression by guiding chromatin-modifying
complexes to specific sites in the genome. However, besides the
example of Xist, clear-cut evidence demonstrating this novel mode
of regulation remains sparse. Here, we focus on HOTAIR, a lncRNA
that is overexpressed in several tumor types and previously
proposed to play a key role in gene silencing through direct
recruitment of Polycomb Repressive Complex 2 (PRC2) to defined
genomic loci. Using genetic tools and a novel RNA-tethering
system, we investigated the interplay between HOTAIR and PRC2 in
gene silencing. Surprisingly, we observed that forced overexpression
of HOTAIR in breast cancer cells leads to subtle transcriptomic
changes that appear to be independent of PRC2. Mechanistically,
we found that artificial tethering of HOTAIR to chromatin causes
transcriptional repression, but that this effect does not require
PRC2. Instead, PRC2 recruitment appears to be a consequence of
gene silencing. We propose that PRC2 binding to RNA might serve
functions other than chromatin targeting
Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven “undruggable”, Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or “undruggable” targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2–8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1)
Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy
Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wildtype genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model
Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats
A goldilocks computational protocol for inhibitor discovery targeting DNA damage responses including replication-repair functions
While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology. Our GL pipeline integrates experimental and predicted structures to efficiently discover leads, allowing early-structure and early-testing (ESET) experiments by many laboratories. By employing an efficient VS protocol to examine protein-protein interfaces (PPIs) and allosteric interactions, we identify ligand binding sites beyond active sites, leveraging in silico advances for molecular docking and modeling to screen PPIs and multiple targets. A diverse 3,174 compound ESET library combines Diamond Light Source DSI-poised, Protein Data Bank fragments, and FDA-approved drugs to span relevant chemotypes and facilitate downstream hit evaluation efficiency for academic laboratories. Two VS per library and multiple ranked ligand binding poses enable target testing for several DDR targets. This GL library and protocol can thus strategically probe multiple DDR network targets and identify readily available compounds for early structural and activity testing to overcome bottlenecks that can limit timely breakthrough drug discoveries. By testing accessible compounds to dissect multi-functional DDRs and suggesting inhibitor mechanisms from initial docking, the GL approach may enable more groups to help accelerate discovery, suggest new sites and compounds for challenging targets including emerging biothreats and advance cancer biology for future precision medicine clinical trials
- …
