47 research outputs found
Regulating Sustainable Finance in Capital Markets: A Perspective from Socially Embedded Decentered Regulation
We present an ab initio theoretical analysis of the temperature-dependent stability of inherently nanolaminated (Cr1−xMnx)2AlC. The results indicate energetic stability over the composition range x = 0.0 to 0.5 for temperatures ≥600 K. Corresponding thin film compounds were grown by magnetron sputtering from four elemental targets. X-ray diffraction in combination with analytical transmission electron microscopy, including electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy analysis, revealed that the films were epitaxial (0001)-oriented single-crystals with x up to 0.16.Funding Agencies|European Research Council under the European Community|258509227754|Knut and Alice Wallenberg Foundation||Swedish Research Council|||DFG-SPP 1299|</p
Роль магистратуры в процессе гармонизации европейского пространства высшего образования
In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn2GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn2GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, S
Synthesis and DFT investigation of new bismuth-containing MAX phases
The M(n + 1)AX(n) phases (M = early transition metal; A = group A element and X = C and N) are materials exhibiting many important metallic and ceramic properties. In the present study powder processing experiments and density functional theory calculations are employed in parallel to examine formation of Zr(2)(Al(1−x)Bi(x))C (0 ≤ x ≤ 1). Here we show that Zr(2)(Al(1−x)Bi(x))C, and particularly with x ≈ 0.58, can be formed from powders even though the end members Zr(2)BiC and Zr(2)AlC seemingly cannot. This represents a significant extension of the MAX phase family, as this is the first report of a bismuth-based MAX phase