639 research outputs found

    Repeatability, accuracy, portability, and errors of the portable alignment gyrocompass system

    Get PDF
    Portable alignment gyrocompass system accuracy, repeatability, portability, and error

    The effect of farming system on dairy cow cleanliness in the UK and implications to udder health

    Get PDF
    The cleanliness of dairy cows was assessed using a 20 point hygiene score system at different times in the year on 14 organic and 14 conventional farms in the UK. Overall, cows were dirtier during winter housing compared to summer grazing. Farming system had no effect on cow cleanliness when cows were at grass, but when housed in the winter, organic cows were more likely to be cleaner. There was a link between cow hygiene scores and milk hygiene, with herds having lower bulk tank somatic cell counts (BTSCC) tending to have cleaner cows. This relationship was strongest for the organic herds. There was no significant link between hygiene score and Bactoscan (BS) count or mastitis incidence

    Detection of DNA-Psoralen Photoadducts in Mammalian Skin

    Get PDF
    An immunofluorescence (IF) method for the detection of 8-methoxypsoralen (8-MOP) photoadducts to DNA has been developed to assess nuclear damage in keratinocytes and melanocytes after psoralen plus UVA (PUVA) treatment, both under in vitro and in vivo conditions. Cryostat sections of the albino and pigmented guinea pig and human skin were used for in vitro studies to establish minimal and maximal drug concentration and UVA dosimetry for the detection of DNA-8-MOP photoadducts. Limits of detection were as low as 10 ng/cm2 8-MOP and 1 J/cm2 UVA for skin sections and sodium bromide-split epidermal sheets. Guinea pigs treated with topical PUVA revealed positive IF stain in epidermal cell nuclei at a threshold dose of 100 μg/cm2: 8-MOP and 13 J/cm2 UVA. Pretreatments of cryostat cuts with ethanol and alkali before IF test enhanced the sensitivity of detection in vivo about 10-fold and enabled us to follow the repair of DNA damage after treating normal guinea pig skin with a dose of 50 μg/cm2 8-MOP plus 6 J/cm2 UVA. The most interesting findings were as follows: (1) A sensitive method to detect PUVA-induced nuclear damage in epidermal and dermal cells was developed. (2) PUVA treatment induced nuclear DNA damage to melanocytes as well as to adjacent keratinocytes, and melanocytes appeared to be 10 times less vulnerable to photo-damage than keratinocytes. (3) There was a greater propensity for the proliferative cells to be damaged by PUVA. (4) PUVA induced nuclear damage up to 700 μm depth in the dermis. (5) The usefulness of the IF test in detecting DNA damage in μg and ng amounts in vivo and in following the repair of damaged DNA induced by PUVA

    Talent management in triadic organizational architectures

    Get PDF
    We study a model of team problem-solving over a large solution space. Compared to the existing literature, we allow for heterogeneity both in the organizational architectures and in the agents' cognitive abilities; moreover, we introduce a more expressive performance measure. We find a robust ranking of the triadic architectures with respect to their effectiveness and provide a key recommendation for talent management in partial hierarchies

    Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment.

    Get PDF
    Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology. Mutations in malignant cells also affected tumor microenvironment composition and cell states. Our melanoma models shared genotype-associated expression programs with patient melanomas, and a deep learning model showed that these models partially recapitulated genotype-associated histopathological features as well. Thus, a progressive series of genome-edited human cancer models can causally connect genotypes carrying multiple mutations to phenotype

    Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Get PDF
    Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV

    The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulse oximetry is routinely used to continuously and noninvasively monitor arterial oxygen saturation (SaO<sub>2</sub>) in critically ill patients. Although pulse oximeter oxygen saturation (SpO<sub>2</sub>) has been studied in several patient populations, including the critically ill, its accuracy has never been studied in emergency department (ED) patients with severe sepsis and septic shock. Sepsis results in characteristic microcirculatory derangements that could theoretically affect pulse oximeter accuracy. The purposes of the present study were twofold: 1) to determine the accuracy of pulse oximetry relative to SaO2 obtained from ABG in ED patients with severe sepsis and septic shock, and 2) to assess the impact of specific physiologic factors on this accuracy.</p> <p>Methods</p> <p>This analysis consisted of a retrospective cohort of 88 consecutive ED patients with severe sepsis who had a simultaneous arterial blood gas and an SpO<sub>2 </sub>value recorded. Adult ICU patients that were admitted from any Calgary Health Region adult ED with a pre-specified, sepsis-related admission diagnosis between October 1, 2005 and September 30, 2006, were identified. Accuracy (SpO<sub>2 </sub>- SaO<sub>2</sub>) was analyzed by the method of Bland and Altman. The effects of hypoxemia, acidosis, hyperlactatemia, anemia, and the use of vasoactive drugs on bias were determined.</p> <p>Results</p> <p>The cohort consisted of 88 subjects, with a mean age of 57 years (19 - 89). The mean difference (SpO<sub>2 </sub>- SaO<sub>2</sub>) was 2.75% and the standard deviation of the differences was 3.1%. Subgroup analysis demonstrated that hypoxemia (SaO<sub>2 </sub>< 90) significantly affected pulse oximeter accuracy. The mean difference was 4.9% in hypoxemic patients and 1.89% in non-hypoxemic patients (p < 0.004). In 50% (11/22) of cases in which SpO<sub>2 </sub>was in the 90-93% range the SaO2 was <90%. Though pulse oximeter accuracy was not affected by acidoisis, hyperlactatementa, anemia or vasoactive drugs, these factors worsened precision.</p> <p>Conclusions</p> <p>Pulse oximetry overestimates ABG-determined SaO<sub>2 </sub>by a mean of 2.75% in emergency department patients with severe sepsis and septic shock. This overestimation is exacerbated by the presence of hypoxemia. When SaO<sub>2 </sub>needs to be determined with a high degree of accuracy arterial blood gases are recommended.</p
    • …
    corecore