
Chapter 14
Talent management in triadic organizational
architectures

Marco LiCalzi and Lucia Milone
Abstract We study a model of team problem-solving over a large solution space. Compared to
the existing literature, we allow for heterogeneity both in the organizational architectures and in
the agents’ cognitive abilities; moreover, we introduce a more expressive performance measure. We
find a robust ranking of the triadic architectures with respect to their effectiveness and provide a
key recommendation for talent management in partial hierarchies.

14.1 Introduction

This paper considers a team of agents of limited problem-solving ability, who must
explore a large solution space. Each agent can access only a portion of the space, but
may disclose the results of his search to the teammates. By exchanging information,
the members of the team may jointly solve the problem even when no agent alone
might. More talented agents possess higher cognitive abilities.

LiCalzi and Surucu (2012) proposed this framework to explore the importance of
diversity in agents’ toolboxes for the team performance. They studied the case of
a complete network, where all agents can exchange information with each other ad
libitum, providing sufficient conditions for team success. However, their work muted
the important question of how the organizational architecture affects the quality of
the search carried out by a team; see Mihm et al. (2010). This work extends the model
in three directions and ask two new questions.

The model is generalized by allowing for (partially) hierarchical organizational ar-
chitectures, where each agent has only one chance to act and communication flows
from one to another agent are unidirectional. We restrict attention to the triadic ar-
chitectures that form a connected graph. Up to permutations, there are three possible
architectures: line, star-in, and star-out. The second generalization is that we allow
agents to have different cognitive abilities. The last contribution upgrades the per-
formance measure from a binary indicator (whether the optimal solution is found or
not) to a multivalued indicator (which fraction of the solution space is searched).

Within this framework, we obtain sharp qualitative answers to the following two
questions. First, which organizational architecture is more effective? We find that
the four organizational architectures rank as follow: complete > line > star-in ∼
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star-out. For instance, given the cognitive abilities of the agents, a team based on a
line architecture tends to outperform a team based on a star-in architecture. Second,
given the organizational architecture, how should we place more talented agents to
maximize the team performance? For the complete architecture, this is irrelevant; for
the line, it is almost indifferent; for the star architectures, the key recommendation
is to place the most talented agent in the central position, because performance is
positively related to his cognitive ability.

14.2 The model

There is a team of three problem-solving agents of limited ability who work on a
demonstrable intellective task. A task is intellective if it involves an activity that can
be objectively measured so that people agree on the value of the solution found. And it
is demonstrable if, once found by one agent, the correct solution is easily recognizable
by his teammates.

We formalize this situation by assuming that the team tries to maximize an objec-
tive function V that maps a finite set X of n solutions into real numbers. The function
V : X → R is one-to-one; in particular, it has a unique maximizer at x∗. The task of
the team is locating x∗. This is a demonstrable intellective task that can be carried
out disjunctively: if one of the agents finds x∗, he can show its value V (x∗) to his
teammates and the task is accomplished. Following Marschak and Radner (1972), we
assume that all agents in the team share the same objective and there are no frictions
such as difficulties of communication among people.

Consider a simple example. The solution space is X = {1,2, . . . ,n}, with V (1) <
V (2) < .. . < V (n). Thus, each point k corresponds to its rank with respect to V . Each
agent has access to the current candidate solution, which we normalize to be 1. The
task of the team is to locate the optimal solution n, when all agents know only the
worst available solution.

We represent the limited problem-solving ability of each agent i by a partition Πi of
X; see Rubinstein (1993) for a related approach. Suppressing momentarily subscripts,
consider one agent. The mutually disjoint and exhaustive classes constituting the
partition Π are called blocks. The agent can find the best solution within the block is
working on, but he is impervious to the other blocks until they are disclosed to him
by someone else. For instance, assume n = 12 and consider the partition of agent 1
given by Π1 = {1,2,4|3,5,6|7,8,9|10,11,12}, formed by four blocks. (A vertical bar
separates the blocks.) Given the candidate solution x = 1, the agent can only see the
points 1, 2, 4 and thus will find the solution x = 4.

When two or more agents work together, they can pool their abilities and expand
their search spaces. Continuing our example, suppose that there are 3 agents with the
following partitions:

Π1 = {1,2,4|3,5,6|7,8,9|10,11,12};
Π2 = {1,3,5,7|2,4,8|6,9,11|10,12};
Π3 = {1,2,7|3,9,10,11|4,5,6,8|12}.
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All agents start at x = 1. Agent 1 (named Primus) finds 2 and 4; Agent 2 (Secunda)
finds 3, 5, and 7; Agent 3 (Tertium) finds 2 and 7. If the agents interacts in a team
where everybody can talk to everyone else, the team will find the optimal solution
x∗ = 12. For instance, Tertium may point out 7 to Primus, giving him access to the
block |7,8,9|. Then Primus finds 8 and 9 for the team. Using 9, Secunda opens up
to her block |6,9,11| and can pass 11 back to Primus who discovers x∗ = 12. Clearly,
there are other interactions that may lead the team to the optimal solution. When
X is finite, there is a simple characterization of the set of solutions that are jointly
explored by a team under a complete architecture; see LiCalzi and Surucu (2012).

The final element of the model is that the partitions representing agents’ problem-
solving abilities are randomly (and independently) chosen according to some distri-
bution. This is important to model the idea that, although it may be possible to have
a qualitative ranking over agents’ abilities, we cannot rule out that their individual
performance over a specific problem may be quite different. For instance, when an
agent’s partition is made of very small blocks, in general he is unlikely to find the op-
timal solution; however, if the initial condition x = 1 and the optimal solution x = n
happens by chance to belong in the same block, even a lousy agent may solve the
problem.

This paper relies on the urn model described in Section 5 of LiCalzi and Su-
rucu (2012), generalized to allow for heterogeneity in agents’ cognitive abilities. See
Collevecchio and LiCalzi (2012). Given a space X with n solutions, we assume that
the partition of each agent i contains at most mi blocks. For each agent i, we ran-
domly assign each point from X to one of his blocks mi with equal probability. Each
random draw is stochastically independent, both within and across agents. On aver-
age, fewer blocks imply that a block contains more points and thus an agent with a
lower index mi is more likely to explore a larger subset of X. Hence, the fewer the
blocks, the higher the problem-solving ability of an agent (on average). We call the
ratio ki = n/mi the cognitive ability of an agent.

14.3 Comparison of organizational architectures

The complete architecture assumed in LiCalzi and Surucu (2012) lets agents freely
communicate with each other. This paper studies three triadic organizational archi-
tectures, based on a different information structure modeled by a directed graph. An
agent located at a node i of the graph can pass information to another agent located
at j if there is an edge leading from i to j. Figure 14.1 displays the information struc-
ture for the complete network and for the three architectures considered in this paper.

The line architecture is the prototypical hierarchy where earlier agents have no
access to the information generated by later agents: Primus feeds information to
Secunda; then she forwards information to Tertium, who picks the solution on behalf of
the team. The star-in architecture has Secunda and Tertium passing their information
to Primus, who picks the solution for the team. This architecture is used in Rivkin
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Fig. 14.1: Triadic organizational architectures.

and Siggelkow (2003) to typify the simplest possible notion of hierarchy in their agent-
based study of the effects of organizational design on search. The star-out architecture
has Primus feeding information to Secunda and Tertium, who both suggest their own
solutions and then the best one is implemented. Typical situations that necessitate
such architectures involves issues of confidentiality (lower ranks should not know the
final decision) or speed of decision (cutting down on the rounds of communication
allows for tighter deadlines).

Continuing with the example above, under a line architecture with initial con-
dition x = 1, Primus feeds his block |1,2,4| to Secunda. Using this, she can access
|1,2,3,4,5,7,8| and pass them to Tertium. He views |1,2,3,4,5,6,7,8,9,10,11| and
discovers the solution x∗

l = 11; the team has reviewed 11 elements out of 12, examin-
ing a fraction fl = 11/12 ≈ 91.67% of the solution space. By a similar argument, under
the star-in architecture (with Primus on the receiving end), the team ends up examin-
ing |1,2,3,4,5,6,7,8,9| and finds x∗

i = 9 after reviewing a fraction fi = 9/12 = 75% of
the solution space. Finally, under the star-out architecture, the team gains access to
|1,2,3,4,5,6,7,8|, discovers x∗

o = 8 and explores a fraction fo = 8/12 ≈ 67% of the so-
lution space. Recall that, under the complete architecture, the team discovers x∗

c = 12
and examines fc = 100% of solution space.

In the example, we have x∗
c > x∗

l > x∗
i > x∗

o as well as fc > fl > fi > fo. In general,
however, the two rankings may not coincide even if the fraction f is positively corre-
lated with the ability to discover better solutions. We measure the team performance
by the fraction f of the solution space jointly examined by the team. Since f is a
numerical variable normalized in [0,1], this allows direct comparisons over solutions
space with different cardinalities. (We assume that the starting point for the team is
one of the n available solutions, so f ≥ 1/n.) Moreover, under an obvious assumption
of exchangeability, the span of the search carried out by the team exactly correlates
with the probability of finding the optimal solution. Hence, the higher f , the higher
the probability that the team is successful.

Roughly speaking, our first question is whether we can rank the triadic organiza-
tional architectures with respect to the quality of the team performance as measured
by f . Clearly, the complete architecture dominates because it allows a larger set of
communication links than any other architecture; hence, we focus on ranking the line,
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the star-in, and the star-out architectures. Our second question is concerned with the
effects of how agents with different abilities are positioned within a given architecture.

14.4 Results for the exemplar

Since agents may have different cognitive abilities and their actual problem-solving
abilities are randomized, reaching general conclusions requires a detailed experimental
design. Our approach is to derive plausible claims from the analysis of an exemplar
of the model, and then validate them by means of Monte Carlo simulations over an
extensive range of parameters that define its variants. This latter work can be also
interpreted as a robustness analysis for the representative model associated with the
exemplar. This section describes the experimental design and state our claims. The
following section reports on the design of the Monte Carlo simulations and on the
validation of the claims.

14.4.1 The exemplar

We study three organizational architectures with three agents (line, star-in, star-out)
represented by the directed graphs in Figure 14.1 over a representative model. We
assume a solution space of n = 100 nodes. Each agent i has at most mi blocks in his
partition. For each agent, the pair (n,mi) of parameters defines a random distribution
over the partition that represents i’s problem-solving ability.

A configuration of talents for the agents corresponds to a vector (m1,m2,m3). For
each architecture, we assume m1 +m2 +m3 = 216 and study the team performance for
all configurations that satisfy this constraint. E.g., this includes the symmetric case
m1 = m2 = m3 = 72 where all agents have identical cognitive ability ki = n/mi = 3,
as well as an extreme case like m1 = 1, m2 = 100, m3 = 115 where the first agent’s
cognitive ability is much higher than the others’.

Our choice of parameters for the exemplar is not arbitrary: we get some guidance
from an asymptotic result proved in Collevecchio and LiCalzi (2012) for the complete
network architecture in a different context from ours; see their Theorems 3 and 5. Let
m∗ = max{m1,m2,m3} and m∗ = min{m1,m2,m3}. Stated informally, they show for
large n the condition m∗ < n/(8 lnn) implies that (almost surely) a team arranged in a
complete network architecture is always successful and thus f ≈ 1; on the other hand,
if m∗ > 3n/ lnn then (almost surely) the team cannot be always successful and thus
f < 1. For n = 100, this suggests that m∗ ≥ 3 (and m∗ ≥ 65, respectively) approximates
a necessary (sufficient) condition for having f < 1 in a complete network. The choice
of parameters in our exemplar allows for a correction factor in order to compensate for
the lower effectiveness of the other triadic architectures with respect to the complete
network.



174 M. LiCalzi, L. Milone

An exhaustive search over the exemplar allows us to evaluate how performance is
affected by the agents’ cognitive abilities and by their position in the architecture.
Each simulation (independently) samples the agents’ partitions and lets the agents
search the solution space, recording the team performance as measured by the frac-
tion f of the solution space surveyed by the team. For each architecture and each
configuration, we run 1000 simulations and record the average performance f̄ . Hence,
we have distinct datapoints for each architecture and each configuration.

14.4.2 Ranking architectures

Our first question concerns the performance of different triadic architectures when
agents’ abilities are not known. We begin with a visual description of the data.
For each architecture, we represent each configuration as a point in the simplex
{(m1,m2,m3)∈{1,2, . . . ,214} : m1 +m2 +m3 = 216}. Each point is colored into one
of 10 shades of grey for each decile, increasing from white (f̄ ≤ 10%) to black
(f̄ > 90%). Note that darker regions correspond to better performances.

Figure 14.2 summarizes the data for the three architectures. The vertices of the
simplex represent Agent i = 1,2,3 as we move counterclockwise from the bottom left
corner. The three bisectors represent respectively the general directions in which mi

is decreasing and thus the cognitive ability of Agent i is increasing: f.i., the 30◦-line
coming out from the bottom-left corner represent the configurations where Primus is
increasingly better while the two other agents are equally (and decreasingly) good.

Fig. 14.2: Performance of the three architectures: line (left), star-in (center), star-out
(right).

A common feature of the three simplices in Figure 14.2 is the following. As we
move away from the center towards the edges, the performance measure increases:
making the cognitive ability of an agent sufficiently large allows the team to explore
the entire search space. More importantly, visual inspection suggests that, ceteris
paribus, a configuration of talents is more effective under the line architecture than
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under either star architecture. In particular, out of 23005 possible configurations, we
find that the line architecture performs no worse than either star architectures in
22989 cases (99.93%), while the star-in architecture wins/ties/loses over the star-out
in 11140/690/11175 cases (48.42%, 3%, 48.58%).

To probe this further, we offer a second representation of the data in Figure 14.3.
Based on the vioplot package in R, the picture on the left juxtaposes the box plot
and the kernel density plot for each architecture. The box plot depicts the interquartile
range in black and the median as a white point, while the grey area surrounding it
visualizes the kernel density. Next to this, we give the main descriptive statistics
for the (average) performance of each architectures over all the configurations in the
simplex.
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min quartile median quartile max mean dev.

star-out .0799 .1075 .1540 .2830 1 .2478 .2226

star-in .0801 .1075 .1540 .2834 1 .2478 .2226

line .1165 .1612 .2339 .4178 1 .3328 .2372

Fig. 14.3: Boxplot, kernel densities and descriptive statistics for the three architec-
tures.

The evidence points to a higher performance of the line architecture with respect to
either star architecture when agents are randomly assigned to their positions within
an architecture, while there seems to be no apparent difference between the two star
architectures. We summarize these observations in two claims.
Claim 1a. The line architecture performs better than either star architecture.
Claim 1b. The star architectures perform similarly.

Consistent with such claims, we find that for our samples the null hypothesis that
the line architecture performs no better than either star architectures is rejected by
a two-sample Wilcoxon test (also known as Mann-Whitney test) for any practical
level of confidence. (Here and in the following, by a practical level of confidence we
mean a p-value lower than 10−9.) Similarly, the null hypothesis that the two star
architectures perform differently is rejected by a Mann-Whitney test for any practical
level of confidence. Under our two claims, the ranking of the triadic organizational
architectures with respect to team performance is: complete > line > star-in ∼ star-
out.
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14.4.3 Placement within architectures

Our second question concerns the placement of differently talented individuals within
an organizational architecture. For the complete network, where communication is
unrestricted and everybody gets access to all available information, this is clearly
irrelevant. The line architecture, instead, progressively discloses more information
as we move up in the hierarchy. Thus, one may legitimately expect that placement
matters: if a more talented person acts first, the following agent has access to more
information. The countervailing effect is that a less talented agent in second place
has an inferior ability to exploit this information. As the 3-side symmetry in the
simplex on top of Figure 14.2 suggests, the net effect in our model makes placement
almost irrelevant for the team performance. What is gained by moving talented people
upfront is lost by missing their abilities downstream.

We label the six possible placements of agents in a line architecture as follows.
Given a configuration (m1,m2,m3), the agent with the lowest value of mi has the
highest cognitive ability and we denote him by B for “Best”; similarly, the agent with
second and third lower values of mi are respectively denoted M for “Medium” and
W for “Worst”. Note that the labels refers to mi: depending on the realization of the
partition that is randomly drawn, an agent with a higher cognitive ability may end
up being less effective. The string WBM indicates that W sits at the source, B in the
middle, and M at the sink of the line architecture. Figure 14.4 reports the descriptive
statistics using the same format as Figure 14.3. To avoid ambiguities when discussing
placement, we always remove the 319 configurations (out of 23005) located on the
three bisectors where two or more agents share the same value of mi.

��� ��� ��� ��� ���

:
%0

0
%:

%0
:

%:
0

0
:
%

:
0
%

●

●

●

●

●

●
lower upper std.

min quartile median quartile max mean dev.

WMB 0.1174 0.1618 0.2342 0.4203 1 0.3334 0.2370

MWB 0.1165 0.1624 0.2357 0.4238 1 0.3367 0.2403

BWM 0.1178 0.1623 0.2363 0.4243 1 0.3366 0.2402

BMW 0.1177 0.1614 0.2347 0.4187 1 0.3335 0.2370

MBW 0.1173 0.1611 0.2332 0.4118 1 0.3296 0.2334

WBM 0.1192 0.1608 0.2336 0.4108 1 0.3295 0.2333

Fig. 14.4: Boxplot, kernel densities and descriptive statistics for different line place-
ments.

The six distributions look very similar. A Kruskal-Wallis test over the six set of
data points yields a p-value of .8816 and hence fails to reject the null hypothesis that
they share the same location parameter. We are thus led to the following claim.
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Claim 2a. Team performance in a line is not affected by the placement of agents.
Moving on to the star architectures, the shape of the colored regions in the simplices

is asymmetric with respect to the Agent 1 sitting respectively at the sink (for the
star-in architecture) or at the source (for the star-out architecture). Following the
directions of increasing cognitive ability, the performance of the network degrades
much faster along the diagonal springing from the bottom-left corner than from the
other two. This suggests that the team performance is positively affected by the
cognitive ability of the agent placed in the central position of a star architecture. This
is supported by the descriptive statistics in Figure 14.5, where B denotes the case
where the agent with highest cognitive ability sits at the center and the analogous
convention applies for M and W.

Star-out
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min quartile median quartile max mean dev.

Star-out

W .0799 .0959 .1250 .2055 1 .1965 .1843

M .0824 .1119 .1641 .3090 1 .2629 .2314

B .0839 .1225 .1833 .3473 1 .2851 .2381

Star-in

W .0801 .0961 .1250 .2051 1 .1965 .1843

M .0824 .1118 .1642 .3090 1 .2630 .2314

B .0845 .1226 .1839 .3476 1 .2850 .2382

Fig. 14.5: Boxplot, kernel densities and descriptive statistics for different star place-
ments.

For either star architecture, we perform two distinct Mann-Whitney tests: one
between B and M, and the other between M and W. In all cases, the test rejects the
null hypotheses that the first placement is not better than the second for any practical
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level of confidence. We are thus led to the claim that the placements in either star
architecture can be ranked with respect to the cognitive ability of the central agent
as follows: B > M > W.
Claim 2b. Team performance in a star positively relates to the cognitive ability of the
agent in the central position.

14.5 Validation and robustness

This section validates the claims advanced in the previous one, providing a robust-
ness analysis by means of Monte Carlo simulations. With respect to the exemplar, we
assume that the four parameters n,m1,m2,m3 are random variables, independently
distributed. More specifically, we assume that n is drawn according to a uniform dis-
tribution on [50,150] and each mi according to a uniform distribution on [2,142] for
i = 1,2,3. The expected values for this distribution match those chosen for our exem-
plar. Note that, while E(n) = 100 and E(

∑
i mi) = 72, the stochastic independence

between mi’s implies that the event {
∑

i mi = 72} occurs with low probability. This
specification adds a lot of noise around our exemplar. We separately examine the
validity of our claims.

Our first set of claims concerns the effectiveness of the different triadic architec-
tures, regardless of the placement of the agents. Intuitively, this corresponds to the
case where a principal who ignores the agents’ cognitive abilities can select the ar-
chitecture but not the arrangement of agents within it. We formalize this situation
by testing the performance of each architecture under the assumption that any dis-
tinguishable placement of the agents is equally likely. The line architecture has six of
these, while each of the stars has three.

We run 100,000 Monte Carlo simulations, testing behavior for random configura-
tions of the four parameters across different architectures. Each simulation randomly
picks values for n and mi’s and accordingly draws a partition for each agent. Keep-
ing all of these choices fixed, we select a placement for the agents using a uniform
distribution over each architecture. Then we compute the performance measure f for
each architecture, so that each round k generates a triple fk = (fl,fi,fo). The only
differences in the generation of the elements in the triple are the architecture and the
(random) placement of the agents. That is, the noise is only due to the lack of in-
formation about the cognitive abilities of agents in different position. The descriptive
statistics are given in Figure 14.6 in the usual format.

Claims 1a and 1b respectively posit fl > max{fi,fo} and fi ≈ fo. The descriptive
statistics seem consistent with both claims, although one may point out that the
distribution for star-out seems to be slightly more spread out than the distribution
for star-in. Concerning Claim 1a, the Mann-Whitney test rejects the null hypotheses
that fl is not better than max{fi,fo} for any practical level of confidence. Concerning
Claim 1b, the Mann-Whitney test rejects the null hypotheses that fi and fo are
similar for any practical level of confidence, suggesting that the difference in location
parameters between star-in and star-out may be close to .002. We conclude that
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star-out .0067 .0656 .1250 .2500 1 .2031 .2135

star-in .0067 .0700 .1263 .2479 1 .2033 .2091

line .0067 .0893 .1842 .3973 1 .2866 .2684

Fig. 14.6: Boxplot, kernel densities and descriptive statistics for the three architec-
tures.

Claim 1a is confirmed, while Claim 1b is not unqualifiedly true: however, differences
are tiny and seem to bear little economic significance.

Our second claim concerns the impact of different placements on each triadic ar-
chitectures. Intuitively, this is the case where, given the architecture, the principal
knows the agents’ cognitive abilities and wants to pick the arrangement that gener-
ates the best performance. Here, we need to separately test the three architectures.
For each architecture we run 100,000 Monte Carlo simulations using the same setup
described above except that in any round we compute the performance measure f for
each distinguishable arrangement within each architecture, so that a round generates
a 6-tuple for the line architecture and a triple for each star. Given the architecture,
the only difference in the generation of the elements in an n-tuple lies in the placement
of the agents.

We begin with the line architecture, whose descriptive statistics are given in Fig-
ure 14.7. Claim 2a posits that any of the six distinguishable arrangements of agents in
the line architecture yields (approximately) the same performance. A Kruskal-Wallis
test over the six set of data points, however, rejects the null hypothesis that they
share the same location parameter. On the other hand, if we pair series who have
agents with the same relative ability (BWM/BMW, MWB/MBW, WMB/WBM), all
three Mann-Whitney tests find statistically significant evidence (p-value: .546, .569,
.063) that such pairs are similarly distributed. It is possible that in general the cog-
nitive ability of the leading agent in a line may matter, but at this stage we can only
conclude that there is some minor effect differentiating the placements.

We now move to consider the star architectures. The descriptive statistics are in
Figure 14.8.

Claim 2b posits that the cognitive ability of the agent located in the middle pos-
itively affects the team performance. This is backed up by the descriptive statistics.
Moreover, for either star architecture, two distinct Mann-Whitney tests (one between
B and M, the other between M and W) reject the null hypotheses that the first place-
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min quartile median quartile max mean dev.

WMB 0.0067 0.0849 0.1781 0.3947 1 0.2871 0.2780

MWB 0.0067 0.0866 0.1818 0.4000 1 0.2903 0.2792

BWM 0.0067 0.0938 0.1905 0.4035 1 0.2892 0.2640

BMW 0.0067 0.0941 0.1905 0.4000 1 0.2867 0.2597

MBW 0.0067 0.0892 0.1833 0.3932 1 0.2837 0.2644

WBM 0.0067 0.0882 0.181 0.3918 1 0.2831 0.2658

Fig. 14.7: Boxplot, kernel densities and descriptive statistics for different line place-
ments.
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min quartile median quartile max mean dev.

Star-out

W 0.0067 0.0595 0.1084 0.2048 1 0.1697 0.1783

M 0.0067 0.0654 0.1241 0.2557 1 0.2092 0.2248

B 0.0067 0.0745 0.1429 0.2969 1 0.2304 0.2297

Star-in

W 0.0067 0.0667 0.1143 0.2075 1 0.1696 0.1618

M 0.0067 0.0709 0.129 0.2571 1 0.2084 0.2123

B 0.0067 0.0729 0.1385 0.2881 1 0.2312 0.2408

Fig. 14.8: Boxplot, kernel densities and descriptive statistics for different star place-
ments.
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ment is not better than the second for any practical level of confidence. Thus, we
conclude that Claim 2b is confirmed.

To summarize, we found full support for two statements: the line architecture
performs better than either of the star architectures and the cognitive ability of the
central agent in either star architecture is positively related to team performance.
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