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Abstract

DNA methylation is the most well studied epigenetic modification in cancer biology. 5-

hydroxymethylcytosine is an epigenetic mark that can be converted from 5-methylcytosine by the

ten-eleven translocation gene family. We recently reported the loss of 5-hydroxymethylcytosine in

melanoma compared to benign nevi and suggested that loss of this epigenetic marker is correlated

with tumor virulence based on its association with a worse prognosis. In this study we further

characterize the immunoreactivity patterns of 5-hydroxymethylcytosine in the full spectrum of

melanocytic lesions to further validate the potential practical application of this epigenetic marker.

175 cases were evaluated: 18 benign nevi, 20 dysplastic nevi (10 low-grade and 10 high-grade

lesions), 10 atypical Spitz nevi, 20 borderline tumors, 5 melanomas arising within nevi, and 102

primary melanomas. Progressive loss of 5-hydroxymethylcytosine from benign dermal nevi to

high-grade dysplastic nevi to borderline melanocytic neoplasms to melanoma was observed. In

addition, an analysis of the relationship of nuclear diameter to 5-hydroxymethylcytosine staining

intensity within lesional cells revealed a significant correlation between larger nuclear diameter

and decreased levels of 5-hydroxymethylcytosine. Furthermore, borderline lesions uniquely

exhibited a diverse spectrum of staining of each individual case. This study further substantiates
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the association of 5-hydroxymethylcytosine loss with dysplastic cytomorphologic features and

tumor progression and supports the classification of borderline lesions as a biologically distinct

category of melanocytic lesions.
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Introduction

The process of DNA methylation at the 5-carbon position of cytosine is a critical epigenetic

mechanism in the regulation of gene expression. 5-methylcytosine constitutes 2–8% of all

cytosines in human genomic DNA and impacts a broad range of biological functions and

pathological processes including gene expression, maintenance of genome stability, genomic

imprinting, X-chromosome inactivation, developmental regulation, aging-related processes,

and cancer (1). DNA methylation is the most extensively studied epigenetic modification in

cancer. Tumor cells of various cancer types have been found to exhibit global

hypomethylation as well as selective hypermethylation at the promoters of tumor suppressor

genes associated with silencing of these genes and tumorigenesis (2). In 2009, breakthrough

studies show that 5-hydroxymethylcytosine can be converted from 5-methylcytosine by ten-

eleven translocation family genes (3–5). We reported that loss of 5-hydroxymethylcytosine

is associated with increased melanoma virulence and poor survival (6). Other studies have

also shown 5-hydroxymethylcytosine loss in other cancers including breast, prostate, colon

cancer, and hematologic myeloid malignancies (7–10).

In melanoma, we hypothesized that cytologically atypical cells (as characterized by enlarged

nuclei and a coarse chromatin pattern) represent the subpopulations of melanoma cells with

more aggressive biological behavior. In addition, studies have shown that nuclear size is

helpful in differentiating benign from malignant melanocytic lesions (11–13). Accordingly,

it would be expected that a greater loss of 5-hydroxymethylcytosine would be observed

within cells with enlarged nuclear size as a consequence of the association with increased

virulence.

Melanocytic lesions are extremely heterogeneous in their morphologies with many

overlapping histological features between benign and malignant lesions. Among those, the

most challenging category is the ‘gray zone’ or ‘borderline’ melanocytic lesions, not only in

diagnosis and grading, but also in proper guidance of treatment due to the unknown and

unpredictable biological potential of such lesions (14). In this study, we also assess the 5-

hydroxymethylcytosine staining patterns and possible utilization of this epigenetic marker in

these difficult melanocytic lesions. We analyzed groups of ‘borderline’ lesions including

Spitz nevi with atypia and severely atypical melanocytic proliferations of uncertain

malignant potential (also known as atypical Spitz tumors), for their 5-

hydroxymethylcytosine staining pattern in comparison to clearly benign dermal nevi and

clear-cut cases of melanoma. Furthermore, a challenging situation often encountered by

dermatopathologists in practice is that of melanoma arising within a pre-existing nevus. In
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these cases, particularly when the melanoma cells show “maturation” with depth,

distinguishing the nevus and melanoma cells and thus precise determination of the Breslow

depth can be difficult (15). We also examined this type of challenging case to determine if

the 5-hydroxymethylcytosine stain could help to differentiate the benign nevus component

with a high level of 5-hydroxymethylcytosine from the melanoma component with 5-

hydroxymethylcytosine loss to facilitate accurate Breslow depth measurement.

Materials and Methods

Histopathologic samples

This study was conducted with approval of the Institutional Review Board of Brigham and

Women’s Hospital, Harvard Medical School. In total, 175 cases were studied

retrospectively: 18 benign nevi, 20 dysplastic nevi (10 low-grade, 10 high-grade), 30

borderline lesions (10 Spitz nevi with atypia, 20 severely atypical melanocytic proliferations

of uncertain malignant potential also known as atypical Spitz tumors), 5 melanomas arising

in the background of nevi, and 102 predominantly superficial spreading melanomas. The

melanomas as well as 22 of the borderline lesions were obtained from the annotated

Melanoma Institute of Australia cohort of specimens. The ages of the patients ranged from

19–92, they were 52% male, race was not recorded in the database, however, the population

seen at this clinic is predominantly Caucasian. The remainder of the specimens were

obtained from the pathology archives of Brigham and Women’s Hospital and the University

of Massachusetts. The patient ages for the borderline lesions ranged from 3–66. For 21 of

the borderline lesions follow-up information was available. These included 8 atypical Spitz

nevi and 13 severely atypical melanocytic tumors of uncertain malignant potential or

atypical Spitz tumors. Six patients underwent sentinel lymph node biopsies and all were

negative for melanocytic lesions. 5 of these lesions fell into the category of severely atypical

melanocytic proliferations of uncertain malignant potential or atypical Spitz tumors and one

was classified as an atypical Spitz nevus. All 21 patients survived to their last-recorded

follow-up (ranged from 16–137 months) with no evidence of disease recurrence. The 20

dysplastic nevi were grouped as low-grade (n=10) and high-grade lesions (n=10) according

to Table 1 (16). Dysplasia was assessed in the junctional and/or superficial dermal

components of the nevi (17). The borderline lesion group contained 10 Spitz nevi with

atypia as well as 20 tumors carrying the diagnoses of atypical Spitzoid tumor (n=12), or

severely atypical melanocytic proliferation of uncertain malignant potential (n=8).

Immunohistochemistry and nuclear measurements

Cases were included for analysis based on the diagnosis on the original pathology reports.

Hematoxylin and eosin-stained slides were reviewed by two authors (CGL and ARL) to

confirm diagnoses following immunohistochemical analysis to help blind the

immunohistochemical analysis. Staining scores were not viewed upon hematoxylin and

eosin slide review to eliminate the possibility of selection bias. An additional author (GFM)

reviewed all atypical Spitz nevi and borderline tumors for appropriate categorization.

Immunohistochemical studies were carried out in accordance with Lian et al. (6) using

rabbit anti-5-hydroxymethylcytosine at 1:10,000 (Active Motif, Carlsbad, CA). Within all

slides 2 random areas of the lesion were viewed and representative cells were evaluated in
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terms of nuclear diameter and staining intensity relative to the staining of normal

melanocytes at the basal layer of flanking normal epidermis as a positive internal control.

The normal melanocytes were defined as an intensity of 2 in each case. There was some

variation in the staining intensity of these basal melanocytes, thus the staining of each slide

was calibrated separately based on this intensity. Some variability in tissue uptake of

antibody is typical in immunohistochemistry so we used an internal control to scale staining

intensity to correct for this. A total of 5 cells were evaluated per field (10 cells per tumor) on

a 0–3 scale as shown in to Figure 1. The measurements from all cells were included in the

analysis. For these same cells the nuclear diameter was measured at 400X with an optical

micrometer to the nearest 2.5 micrometers (the smallest unit of measurement on the ocular

micrometer). The long axis of the nucleus was chosen for measurement. There was some

variability in nuclear size because within the tissue, each nucleus was sectioned in a random

location. All measurements were taken by one author (ARL) and a random subset was

reviewed by a second author (CGL) to ensure concordance. Reviewers were blinded to the

diagnosis of each lesion (as far as possible). T-tests were used for all comparisons with p-

values less than 0.05 considered significant.

Semi-quantitative analysis

To confirm our findings in a semi-quantitative manner, 5 cases were chosen at random from

each of the six categories (benign nevi, low-grade dysplastic nevi, high-grade dysplastic

nevi, atypical Spitz nevi, atypical borderline tumors, melanomas) and 3 photographs of 40×

high power fields were taken of each case along with a photograph of normal melanocytes

within the epidermis. Adobe Photoshop CS4 version 11.0 was used to eliminate all but the

melanocytic component from each image as epithelium stains positively for this antibody.

ImageJ software (NIH, Bethesda, MD) was used to analyze the nuclear perimeter in

micrometers and percent of cells meeting or exceeding a threshold staining intensity with the

threshold set at the intensity of normal epidermal melanocytes flanking the melanocytic

lesion (termed strongly staining cells). This threshold was recalibrated for each slide. T-tests

were used for all comparisons with p-values less than 0.05 considered significant.

Results

5-hydroxymethylcytosine levels were high in normal melanocytes that resided as solitary

cells at the basal layer of the epidermis. The nuclear staining of 5-hydroxymethylcytosine in

these normal melanocytes was used as the grading standard (Figure 1). Benign nevi were

comprised of intermixed lightly and darkly staining cells with approximately 2/3 of the cells

staining darkly (Figure 2A and Figure 3). Low-grade dysplastic nevi had a similar pattern to

benign nevi (Figure 2B and Figure 3). The high-grade dysplastic nevi ranged from areas that

were an admixture of about 90% slightly stained and 10% negatively stained cells (Figure 3)

to areas with complete loss (Figure 2C). The predominant pattern seen in melanomas was

complete loss of staining (Figure 2D), however, some melanomas had a mixture of

negatively staining and very lightly staining cells (Figure 3). The 5-hydroxymethylcytosine

staining pattern varied somewhat from melanoma to melanoma as well as within individual

melanomas between subpopulations of cells with differing cytomorphology, highlighting the
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heterogeneous nature of this cancer. Thus individual melanoma cells will not exhibit full

loss of 5-hydroxymethylcytosine with 100% specificity.

In benign nevi, the majority of nevic cells retained strong nuclear staining for 5-

hydroxymethylcytosine (Figure 2A). Interestingly, 5-hydroxymethylcytosine levels were

similar in low-grade dysplastic nevus cases (p = 0.462 compared to dermal nevi), which are

dysplastic nevi with mild atypia and dysplastic nevi with mild to focal moderate atypia

(Figure 2B). We grouped dysplastic nevi with diffuse moderate atypical features and

dysplastic nevi with severe atypia into high-grade dysplastic nevi (12). The high-grade

dysplastic nevi group had significantly lower 5-hydroxymethylcytosine levels compared to

benign and low-grade dysplastic nevi (p = 0.0279, 0.0120 respectively) (Figure 2C and

Table 2). Consistent with our previous findings (6), 5-hydroxymethylcytosine positivity was

significantly lower in melanoma cases compared to benign nevi, low-grade dysplastic nevi,

and high-grade dysplastic nevi (p < 2.2×10−16 for all) (Table 2). There was a progression of

loss of 5-hydroxymethylcytosine from high-grade dysplastic nevi to melanoma (Figure 3).

Interestingly, in essentially all of the melanoma cases and select high-grade dysplastic nevi

with diffuse 5-hydroxymethylcytosine loss, the keratinocytes directly overlying the

melanocytic lesion also exhibited 5-hydroxymethylcytosine loss. The epidermis flanking the

melanocytic lesion stained normally with 5-hydroxymethylcytosine and this was used as an

internal control for staining quality in these lesions. A separate positive internal staining

control for the dysplastic nevi was the deep (dermal) component of these lesions which

exhibited darker 5-hydroxymethylcytosine staining than the superficial dysplastic portion.

The atypical Spitz nevi showed significant 5-hydroxymethylcytosine loss when compared

with benign nevi, low-grade, and high-grade dysplastic nevi (p = 7.141×10−9, p =

3.284×10−8, p = 0.000571 respectively), and showed significantly more 5-

hydroxymethylcytosine expression than melanoma (p = 3.83×10−13) (Table 2). The

remainder of the borderline lesions (the superficial severely atypical melanocytic

proliferations of uncertain malignant potential and atypical Spitzoid tumors) hereafter called

the atypical borderline tumors, were the most variably staining both within the lesions

themselves and between each lesion (Figure 4). This subgroup exhibited the most diverse

spectrum of staining with nests comprised of darkly, lightly and negatively staining cells.

The percent of cells with a total loss of 5-hydroxymethylcytosine varied from a few cells in

some cases to roughly half of the cells in other cases. This group did show significant loss of

5-hydroxymethylcytosine compared to dermal nevi and low-grade dysplastic nevi (p <

2.2×10−16 for both), high-grade dysplastic nevi (p = 5.859×10−9), atypical Spitz nevi (p =

0.0139), and showed significantly more expression than melanomas (p = 6.839×10−9) (Table

2). In addition, to assess the possibility of applying 5-hydroxymethylcytosine as a marker to

differentiate the benign nevus component versus malignant melanocytic component in the

same lesion (to assist accurate measurement of Breslow depth), several cases of melanoma

arising within associated dermal nevus components were studied (Figure 5). Strong staining

of 5-hydroxymethylcytosine levels in the benign nevus component in the deep dermis are

observed along with loss of 5-hydroxymethylcytosine in the melanoma component (Figure

5).
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Linear regression illustrates a significant loss of 5-hydroxymethylcytosine staining with

increased nuclear diameter in melanomas with a p-value of < 2.2×10−16 (Figure 6). The size

differences between dermal nevi (ranged from 2.5–10, most were 5–7.5 micrometers) and

low-grade dysplastic nevi, and between low and high-grade dysplastic nevi were significant

(p = 3.2×10−8, 0.0017 respectively). Melanoma nuclei ranged from 2.5 to 27.5 micrometers

in diameter, most fell in the 7.5–10 micrometer range. Both atypical Spitz nevi and atypical

borderline tumors had significantly larger nuclear size than benign nevi (p = 0.0007, p <

2.2×10−16 respectively). Only atypical borderline tumors had larger nuclear size than low-

grade dysplastic nevi (p = 0.0133). High-grade dysplastic nevi had significantly larger

nuclear size than atypical Spitz nevi (p = 3.978×10−7) but not atypical borderline tumors.

Atypical borderline tumors had significantly larger nuclear size than atypical Spitz nevi (p =

1.149×10−5). Melanomas showed a significantly larger nuclear diameter than every other

lesion group (p < 0.001 for all comparisons) (Table 2).

The results of our semi-quantitative analysis on a small subset of cases from each category

confirmed the majority of the above findings in a small subset of our cases. 15 high power

fields were analyzed for each category except for the low-grade dysplastic nevi where 3

fields had to be eliminated due to difficulty of the software in determining nuclear size

because of overlap. Similar observations in the proportion of strongly staining cells and

nuclear perimeters were found (Table 3). Compared to melanoma, dermal nevi, low-grade

dysplastic nevi, atypical Spitz nevi, and atypical borderline tumors had a significantly

increased proportion of strongly staining cells. Compared to dermal nevi, high-grade

dysplastic nevi, atypical Spitz nevi, atypical borderline tumors, and melanomas had a

significantly lower proportion of strongly staining cells. With regard to nuclear perimeter,

all groups had a significantly smaller perimeter than melanomas and atypical Spitz nevi,

atypical borderline tumors, and melanomas had a significantly larger perimeter than dermal

nevi.

Discussion

5-hydroxymethylcytosine loss is strongly associated with melanoma and specifically with a

poor prognosis in superficial spreading and nodular melanomas (6). This study provides

further support to the finding that 5-hydroxymethylcytosine loss is a putative epigenetic

biomarker of tumor progression in melanocytic lesions. Progressive loss of 5-

hydroxymethylcytosine is found between benign nevi, low-grade dysplastic nevi, high-grade

dysplastic nevi, atypical Spitz nevi, atypical borderline tumors, and melanoma. On average,

nuclear diameter likewise increases within the spectrum of benign to dysplastic to frankly

malignant melanocytic neoplasms and the loss of 5-hydroxymethylcytosine staining pattern

correlates with changes in nuclear size. Interestingly the correlation with 5-

hydroxymethylcytosine staining intensity and nuclear diameter persists within the

melanomas in this study indicating heterogeneity in nuclear atypia and 5-

hydroxymethylcytosine staining within this group. Our measurement technique probably

underestimates true nuclear diameter (and nuclear perimeter) since the sectioning technique

catches each nucleus in a random orientation. The ‘nuclear diameters’ measured could be

smaller than the maximal nuclear diameter because sectioning did not occur through the

center of the nucleus. The impact of this measurement will likely underestimate true nuclear
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diameter particularly for lesions with larger nuclei (melanomas). The possibility arises that

the loss of 5-hydroxymethylcytosine staining intensity with increased nuclear size is purely

a dilutional effect. This is highly unlikely given that previous studies have shown loss of 5-

hydroxymethylcytosine in many low-grade malignancies with mild cytological atypia,

including breast, prostate, and colon cancer implicating the loss of 5-hydroxymethylcytosine

as an early event in carcinogenesis (7). Additionally, further studies reported by Lian et al.

(6) strongly support a mechanistic role for 5-hydroxymethylcytosine in melanoma as

overexpressing 5-hydroxymethylcytosine in human melanoma cells reduces tumor growth in

mouse xenograft models and prolongs tumor-free survival in zebrafish models (6).

Importantly, our prior work includes a deep sequencing analysis that shows a global

decrease in 5-hydroxymethylcytosine levels in the entire melanoma genome compared to

nevi indicating that this effect is not simply due to a similar number of binding sites spread

over a larger nuclear area (6). Thus a reasonable conclusion is that 5-hydroxymethylcytosine

is lost as cells undergo dysplastic or malignant transformation.

Interestingly, the loss of 5-hydroxymethylcytosine in keratinocytes overlying melanomas

and occasional high-grade dysplastic nevi was also observed in our study. It indicates an

epigenetic shift not just in the tumor itself but in the surrounding microenvironment, raising

the possibility of an environment permissive for melanoma formation.

In summary, we have studied the expression pattern of 5-hydroxymethylcytosine in a full

spectrum of melanocytic lesions from benign nevi to melanoma and demonstrate the

progressive loss of this epigenetic marker with increasing dysplasia as well as nuclear

diameter. In addition, the loss of 5-hydroxymethylcytosine was observed in severely

dysplastic subpopulations of cells within individual lesions of dysplastic nevi, borderline

melanocytic lesions and more diffusely in most melanomas. Future studies including PCR

and genomic deep sequencing will be needed to confirm these findings within dysplastic

nevi and borderline lesions. The mosaic pattern, seen most dramatically in the borderline

lesions, supports classification of borderline lesions as biologically distinct as previously

proposed (18). The current utility of this biomarker may revolve around distinguishing

nevus cells from melanoma cells in cases where the two intersect to determine an accurate

Breslow depth. Further studies utilizing larger cohorts of borderline lesions with long

clinical follow-up are required to determine whether loss of 5-hydroxymethylcytosine can

assist in predicting the clinical outcomes of patients with such lesions. It also raises the

possibility that subpopulations of melanoma cells with complete loss of 5-

hydroxymethylcytosine correlate with higher virulence in melanoma. In summary, these

findings further implicate 5-hydroxymethylcytosine as a potential biomarker in melanocytic

lesions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nuclear staining intensity scoring system
Staining intensity of nuclei was graded according to the following criteria. Examples of each

grade are shown on the left. Nuclei positive for 5-hydroxymethylcytosine stain brown,

nuclei negative for 5-hydroxymethylcytosine stain gray/purple with the counterstain.
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Figure 2. 5-hydroxymethylcytosine in benign or low-grade nevi compared to high-grade nevi and
melanoma
Conventional histology (left, hematoxylin and eosin) and 5-hydroxymethylcytosine (right,

immunohistochemistry) staining patterns (200× on top, representative area magnified below)

of a dermal nevus (A), low-grade dysplastic nevus (B), high-grade dysplastic nevus (C), and

melanoma (D). The 5-hydroxymethylcytosine staining pattern of low-grade dysplastic

lesions (B) resembles that of benign nevi (A). Overall the high-grade lesions show some

staining loss with a subset showing complete loss as shown here (C), resembling the staining

pattern of melanoma (D). Within the high-grade dysplastic nevus there is cytologic atypia as

well as prominent architectural atypia with extension down adnexal structures. The inserts

within the 5-hydroxymethylcytosine staining pictures for C and D illustrate positive internal

controls of normal staining of follicular epithelium (C) and the flanking epidermis (C, D).
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Figure 3. Progressive loss of 5-hydroxymethylcytosine with increasing dysplasia
5-hydroxymethylcytosine immunohistochemistry staining positivity is increasingly lost from

benign and low-grade dysplastic nevi to high-grade dysplastic nevi to melanoma. 200×

sections are shown above with selected areas magnified below.
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Figure 4. 5-hydroxymethylcytosine in borderline melanocytic lesions
Two borderline melanocytic lesions (left, hematoxylin and eosin and right,

immunohistochemistry stains) show a mosaic pattern of 5-hydroxymethylcytosine staining

with a mixture of positively and negatively staining cells.
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Figure 5. 5-hydroxymethylcytosine highlights nevic component within a melanoma
Conventional histology of a case of superficial spreading melanoma arising within a benign

dermal nevus (left column, hematoxylin and eosin). 5-hydroxymethylcytosine

immunohistochemistry stain (right column) show negativity in the superficial malignant

melanoma components and positivity in dermal nested nevic components (right column).

The black arrow highlights the nevic nests and red arrow indicates the larger melanoma cells

surrounded by inflammation.
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Figure 6. Loss of 5-hydroxymethylcytosine staining correlates with nuclear size
Linear regression of the staining intensity of melanomas as a function of nuclear size

illustrates a significant loss of staining correlating with an increase in nuclear size (p <

2.2×10−16, t-test).
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Table 2

Staining Intensity and Nuclear Size in a Spectrum of Melanocytic Lesions

Lesion Mean nuclear intensity Mean nuclear size (range)

Dermal nevi 1.7 * 6.2 (2.5–10) *

All dysplastic nevi 1.6 * 8.5 (2.5–12.5) *+

Low-grade dysplastic nevi 1.8 * 8 (2.5–12.5) *+

High-grade dysplastic nevi 1.3 *+ 8.8 (5–12.5) *+

Atypical Spitz nevi 1.2 *+ 7.4 (2.5–12.5) *+

Atypical borderline tumors 0.9 *+ 8.7 (2.5–20) *+

Melanomas 0.5 + 9.5 (2.5–27.5) +

*
p < 0.001 compared to melanoma,

+
p < 0.05 compared to dermal nevi (t-test)
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Table 3

Semi-Quantitative Analysis of Strongly Staining Cells and Nuclear Perimeter

Lesion Mean proportion of
strongly staining cells

Mean nuclear perimeter
(range)

Dermal nevi 0.63 * 17.3 (15.9–18.8) *

All dysplastic nevi 0.36 *+ 18.0 (15.3–23.0) *

Low-grade dysplastic nevi 0.47 * 17.8 (15.3–21.2) *

High-grade dysplastic nevi 0.27 + 18.2 (16.0–23.0) *

Atypical Spitz nevi 0.37 *+ 19.8 (17.4–22.3) *+

Atypical borderline tumors 0.14 *+ 19.8 (16.7–24.5) *+

Melanomas 0.01 + 22.6 (18.4–25.7) +

*
p < 0.05 compared to melanoma,

+
p < 0.05 compared to dermal nevi (t-test)
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