2,246 research outputs found

    Ab initio simulations of hydrogen-bonded ferroelectrics: collective tunneling and the origin of geometrical isotope effects

    Full text link
    Ab initio simulations that account for nuclear quantum effects have been used to examine the order-disorder transition in squaric acid, a prototypical H-bonded antiferroelectric crystal. Our simulations reproduce the >100 K difference in transition temperature observed upon deuteration as well as the strong geometrical isotope effect observed on intermolecular separations within the crystal. We find that collective transfer of protons along the H-bonding chains - facilitated by quantum mechanical tunneling - is critical to the order-disorder transition and the geometrical isotope effect. This sheds light on the origin of isotope effects and the importance of tunneling in squaric acid which likely extends to other H-bonded ferroelectrics.Comment: 5 pages, 4 figure

    Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces

    Get PDF
    Using ab initio path-integral molecular dynamics, we show that water-hydroxyl overlayers on transition metal surfaces exhibit surprisingly pronounced quantum nuclear effects. The metal substrates serve to reduce the classical proton transfer barriers within the overlayers and, in analogy to ice under high pressure, to shorten the corresponding intermolecular hydrogen bonds. Depending on the substrate and the intermolecular separations it imposes, the traditional distinction between covalent and hydrogen bonds is lost partially [e.g., on Pt(111) and Ru(0001)] or almost entirely [e.g., on Ni(111)]. We suggest that these systems provide an excellent platform on which to systematically explore the magnitude of quantum nuclear effects in hydrogen bonds

    Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole

    Get PDF
    The corrosion of materials is an undesirable and costly process affecting many areas of technology and everyday life. As such, considerable effort has gone into understanding and preventing it. Organic molecule based coatings can in certain circumstances act as effective corrosion inhibitors. Although they have been used to great effect for more than sixty years, how they function at the atomic-level is still a matter of debate. In this work, computer simulation approaches based on density functional theory are used to investigate benzotriazole (BTAH), one of the most widely used and studied corrosion inhibitors for copper. In particular, the structures formed by protonated and deprotonated BTAH molecules on Cu(111) have been determined and linked to their inhibiting properties. It is found that hydrogen bonding, van der Waals interactions and steric repulsions all contribute in shaping how BTAH molecules adsorb, with flat-lying structures preferred at low coverage and upright configurations preferred at high coverage. The interaction of the dehydrogenated benzotriazole molecule (BTA) with the copper surface is instead dominated by strong chemisorption via the azole moiety with the aid of copper adatoms. Structures of dimers or chains are found to be the most stable structures at all coverages, in good agreement with scanning tunnelling microscopy results. Benzotriazole thus shows a complex phase behaviour in which van der Waals forces play an important role and which depends on coverage and on its protonation state and all of these factors feasibly contribute to its effectiveness as a corrosion inhibitor

    Coupled cluster benchmarks of water monomers and dimers extracted from DFT liquid water: the importance of monomer deformations

    Full text link
    To understand the performance of popular density-functional theory (DFT) exchange-correlation (xc) functionals in simulations of liquid water, water monomers and dimers were extracted from a PBE simulation of liquid water and examined with coupled cluster with single and double excitations plus a perturbative correction for connected triples [CCSD(T)]. CCSD(T) reveals that most of the dimers are unbound compared to two gas phase equilibrium water monomers, largely because monomers within the liquid have distorted geometries. Of the three xc functionals tested, PBE and BLYP systematically underestimate the cost of the monomer deformations and consequently predict too large dissociation energies between monomers within the dimers. This is in marked contrast to how these functionals perform for an equilibrium water dimer and other small water clusters in the gas phase, which only have moderately deformed monomers. PBE0 reproduces the CCSD(T) monomer deformation energies very well and consequently the dimer dissociation energies much more accurately than PBE and BLYP. Although this study is limited to water monomers and dimers, the results reported here may provide an explanation for the overstructured radial distribution functions routinely observed in BLYP and PBE simulations of liquid water and are of relevance to water in other phases and to other associated molecular liquids.Comment: 10 pages, 8 figures, Submitted to Journal of Chemical Physics, Related information can be found in http://www.fhi-berlin.mpg.de/th

    Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange

    Get PDF
    Based on the results of density functional theory calculations, a novel mechanism for the diffusion of water dimers on metal surfaces is proposed, which relies on the ability of H bonds to rearrange through quantum tunneling. The mechanism involves quasifree rotation of the dimer and exchange of H-bond donor and acceptor molecules. At appropriate temperatures, water dimers diffuse more rapidly than water monomers, thus providing a physical explanation for the experimentally measured high diffusivity of water dimers on Pd{111} [Mitsui et al., Science 297, 1850 (2002)]

    To Wet or Not to Wet? Dispersion Forces Tip the Balance for Water Ice on Metals

    Get PDF
    Despite widespread discussion, the role of van der Waals dispersion forces in wetting remains unclear. Here we show that nonlocal correlations contribute substantially to the water-metal bond and that this is an important factor in governing the relative stabilities of wetting layers and 3D bulk ice. Because of the greater polarizability of the substrate metal atoms, nonlocal correlations between water and the metal exceed those between water molecules within ice. This sheds light on a long-standing problem, wherein common density functional theory exchange-correlation functionals incorrectly predict that none of the low temperature experimentally characterized icelike wetting layers are thermodynamically stable

    Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces

    Get PDF
    Exploring the role of van der Waals (vdW) forces on the adsorption of molecules on extended metal surfaces has become possible in recent years thanks to exciting developments in density functional theory (DFT). Among these newly developed vdW-inclusive methods, interatomic vdW approaches that account for the nonlocal screening within the bulk [V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012)] and improved nonlocal functionals [J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201(2010)] have emerged as promising candidates to account efficiently and accurately for the lack of long-range vdW forces in most popular DFT exchange-correlation functionals. Here we have used these two approaches to compute benzene adsorption on a range of close-packed (111) surfaces upon which it either physisorbs (Cu, Ag, and Au) or chemisorbs (Rh, Pd, Ir, and Pt). We have thoroughly compared the performance between the two classes of vdW-inclusive methods and when available compared the results obtained with experimental data. By examining the computed adsorption energies, equilibrium distances, and binding curves we conclude that both methods allow for an accurate treatment of adsorption at equilibrium adsorbate-substrate distances. To this end, explicit inclusion of electrodynamic screening in the interatomic vdW scheme and optimized exchange functionals in the case of nonlocal vdW density functionals is mandatory. Nevertheless, some discrepancies are found between these two classes of methods at large adsorbate-substrate separations

    Can the Life Insurance Market Provide Evidence for a Bequest Motive?

    No full text
    Alla borde vara feminister av Chimamanda Ngozi Adichie delades ut till Sveriges gymnasietvåor läsåret 2015/2016 med en medföljande lärarhandledning. I den här uppsatsen berättar elever och lärare om sina erfarenheter av boken och undervisning utifrån den. Halvstrukturerande intervjuer, en enkät och en fokusgrupp har använts för att samla in materialet som sedan analyserats tematiskt utifrån Freires kritiska pedagogik, Spivaks postkoloniala perspektiv och Kumashiros teorier om lärande genom kris. Både elever och lärare vittnar om ämnets och undervisningens angelägenhet och förändrande potential, men också om riskerna med att undervisningen reproducerar svenskhet som det jämställda och vice versa. Ett par slutsatser är att ett historiskt perspektiv kan bidra till att få normer och strukturer att framstå som föränderliga, och ett postkolonialt perspektiv kan behövas för att sexism inte oproblematiserat ska tillskrivas den etniske Andre, något som flera andraspråkselever vittnar om. Vidare diskuteras det didaktiska värdet med en intersektionell analys och att låta eleverna själva formulera problemen som undervisningen tar sin utgångspunkt i
    corecore