1,433 research outputs found

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    Nonnormal energy transient growth in the Taylor-Couette problem

    Get PDF
    This work is devoted to the study of transient growth of perturbations in the Taylor-Couette problem due to nonnormal mechanisms. The study is carried out for a particular small gap case and is mostly focused on the linearly stable regime of counter-rotation. The exploration covers a wide range of inner and outer angular speeds as well as axial and azimuthal modes. Clear evidence of transient growth is found as long as the counter-rotation is increased. The numerical results are in agreement with former analyses based on energy methods. Similarities with transient growth mechanisms in plane Couette flow and in Hagen-Poiseuille flow are found. This is reflected in the modulation of the basic circular Couette flow by the presence of azimuthal streaks as a result of the nonmodal growth of initial axisymmetric perturbations. This study might shed some light on the subcritical transition to turbulence which is found experimentally in Taylor-Couette flow when the cylinders rotate in opposite directions.\ud \ud This work was supported by UK Engineering and Physical Sciences Research Council Grant GR/M30890

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other

    On the galloping instability of two-dimensional bodies having elliptical cross sections.

    Get PDF
    Galloping, also known as Den Hartog instability, is the large amplitude, low frequency oscillation of a structure in the direction transverse to the mean wind direction. It normally appears in the case of bodies with small stiffness and structural damping, when they are placed in a flow provided the incident velocity is high enough. Galloping depends on the slope of the lift coefficient versus angle of attack curve, which must be negative. Generally speaking this implies that the body is stalled after boundary layer separation, which, as it is known in non-wedged bodies, is a Reynolds number dependent phenomenon. Wind tunnel experiments have been conducted aiming at establishing the characteristics of the galloping motion of elliptical cross-section bodies when subjected to a uniform flow, the angles of attack ranging from 0° to 90°. The results have been summarized in stability maps, both in the angle of attack versus relative thickness and in the angle of attack versus Reynolds number planes, where galloping instability regions are identified

    One-dimensional dynamics of nearly unstable axisymmetric liquid bridges

    Get PDF
    A general one-dimensional model is considered that describes the dynamics of slender, axisymmetric, noncylindrical liquid bridges between two equal disks. Such model depends on two adjustable parameters and includes as particular cases the standard Lee and Cosserat models. For slender liquid bridges, the model provides sufficiently accurate results and involves much easier and faster calculations than the full three-dimensional model. In particular, viscous effects are easily accounted for. The one-dimensional model is used to derive a simple weakly nonlinear description of the dynamics near the instability limit. Small perturbations of marginal instability conditions are also considered that account for volume perturbations, nonequality of the supporting disks, and axial gravity. The analysis shows that the dynamics breaks the reflection symmetry on the midplane between the supporting disks. The weakly nonlinear evolution of the amplitude of the perturbation is given by a Duffing equation, whose coefficients are calculated in terms of the slenderness as a part of the analysis and exhibit a weak dependence on the adjustable parameters of the one-dimensional model. The amplitude equation is used to make quantitative predictions of both the (first stage of) breakage for unstable configurations and the (slow) dynamics for stable configurations

    An experimental analysis of the instability of non-axisymmetric liquid bridges in a gravitational field

    Get PDF
    he stability limits of nonaxisymmetric liquid bridges between equal in diameter, coaxial disks have been determined experimentally. Experiments have been performed by working with very small size liquid bridges. The experimental setup allows any orientation of the liquid bridge axis with respect to the local gravity vector acceleration. By appropriately orienting the liquid bridge axis, the influence on the stability limits of both the lateral and the axial component of the acceleration acting on the liquid bridge has been investigated

    A spectral Petrov-Galerkin formulation for pipe flow II: Nonlinear transitional stages

    Get PDF
    This work is devoted to the study of the nonlinear evolution of perturbations of Hagen-Poiseuille or pipe flow. We make use of a solenoidal spectral Petrov-Galerkin method for the spatial discretization of the Navier-Stokes equations for the perturbation field. For the time evolution, we use a semi-implicit time integration scheme. Special attention is given to the explicit treatment and efficient evaluation of the nonlinear terms. The hydrodynamic stability analysis is focused on the streak breakdown process by which two-dimensional streamwise-independent perturbations transiently modulate the basic flow, resulting in a profile which is linearly unstable with respect to three-dimensional perturbations. This mechanism is one possible route of transition to turbulence in subcritical shear flows

    Linearized pipe flow to Reynolds number 10710^7

    Get PDF
    A Fourier-Chebyshev Petrov-Galerkin spectral method is described for high-accuracy computation of linearized dynamics for flow in an infinite circular pipe. Our code is unusual in being based on solenoidal velocity variables and in being written in MATLAB. Systematic studies are presented of the dependence of eigenvalues, transient growth factors, and other quantities on the axial and azimuthal wave numbers and the Reynolds number R for R ranging from 10210^2 to the idealized (physically unrealizable) value 10710^7. Implications for transition to turbulence are considered in the light of recent theoretical results of S. J. Chapman
    • …
    corecore