451 research outputs found

    Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes

    Get PDF
    Epitope-tagged active-site-directed probes are widely used to visualize the activity of deubiquitinases (DUBs) in cell extracts, to investigate the specificity and potency of small-molecule DUB inhibitors, and to isolate and identify DUBs by mass spectrometry. With DUBs arising as novel potential drug targets, probes are required that can be produced in sufficient amounts and to meet the specific needs of a given experiment. The established method for the generation of DUB probes makes use of labor-intensive intein-based methods that have inherent limitations concerning the incorporation of unnatural amino acids and the amount of material that can be obtained. Here, we describe the total chemical synthesis of active-site-directed probes and their application to activity-based profiling and identification of functional DUBs. This synthetic methodology allowed the easy incorporation of desired tags for specific applications, for example, fluorescent reporters, handles for immunoprecipitation or affinity pull-down, and cleavable linkers. Additionally, the synthetic method can be scaled up to provide significant amounts of probe. Fluorescent ubiquitin probes allowed faster, in-gel detection of active DUBs, as compared to (immuno)blotting procedures. A biotinylated probe holding a photocleavable linker enabled the affinity pull-down and subsequent mild, photorelease of DUBs. Also, DUB activity levels were monitored in response to overexpression or knockdown, and to inhibition by small molecules. Furthermore, fluorescent probes revealed differential DUB activity profiles in a panel of lung and prostate cancer cells

    Turning Antibodies into Ratiometric Bioluminescent Sensors for Competition-Based Homogeneous Immunoassays

    Get PDF
    Here we present LUCOS (Luminescent Competition Sensor), a modular and broadly applicable bioluminescent diagnostic platform enabling the detection of both small molecules and protein biomarkers. The construction of LUCOS sensors entails the covalent and site-specific coupling of a bioluminescent sensor component to an analyte-specific antibody via protein G-mediated photoconjugation. Target detection is accomplished through intramolecular competition with a tethered analyte competitor for antibody binding. We established two variants of LUCOS: an inherent ratiometric LUCOSR variant and an intensiometric LUCOSI version, which can be used for ratiometric detection upon the addition of a split calibrator luciferase. To demonstrate the versatility of the LUCOS platform, sensors were developed for the detection of the small molecule cortisol and the protein biomarker NT-proBNP. Sensors for both targets displayed analyte-dependent changes in the emission ratio and enabled detection in the micromolar concentration range (KD,app = 16-92 μM). Furthermore, we showed that the response range of the LUCOS sensor can be adjusted by attenuating the affinity of the tethered NT-proBNP competitor, which enabled detection in the nanomolar concentration range (KD,app = 317 ± 26 nM). Overall, the LUCOS platform offers a highly versatile and easy method to convert commercially available monoclonal antibodies into bioluminescent biosensors that provide a homogeneous alternative for the competitive immunoassay.</p

    Q-Curves with Complex Multiplication

    Get PDF
    The Hecke character of an abelian variety A/F is an isogeny invariant and the Galois action is such that A is isogenous to its Galois conjugate A^σ if and only if the corresponding Hecke character is fixed by σ. The quadratic twist of A by an extension L/F corresponds to multiplication of the associated Hecke characters. This leads us to investigate the Galois groups of families of quadratic extensions L/F with restricted ramification which are normal over a given subfield k of F. Our most detailed results are given for the case where k is the field of rational numbers and F is a field of definition for an elliptic curve with complex multiplication by K. In this case the groups which occur as Gal(L/K) are closely related to the 4-torsion of the class group of K. We analyze the structure of the local unit groups of quadratic fields to find conditions for the existence of curves with good reduction everywhere. After discussing the question of finding models for curves of a given Hecke character, we use twists by 3-torsion points to give an algorithm for constructing models of curves with known Hecke character and good reduction outside 3. The endomorphism algebra of the Weil restriction of an abelian variety A may be determined from the Grössencharacter of A. We describe the computation of these algebras and give examples in which A has dimension 1 or 2 and its Weil restriction has simple abelian subvarieties of dimension ranging between 2 and 24

    Value and Quality of Care in Head and Neck Oncology

    Get PDF
    Purpose of ReviewThe concept of value-based health care (VBHC) was articulated more than a decade ago. However, its clinical implementation remains an on-going process and a particularly demanding one for the domain of head and neck cancer (HNC). These cancers often present with fast growing tumors in functionally and cosmetically sensitive sites and afflict patients with differing circumstances and comorbidity. Moreover, the various treatment modalities and protocols have different effects on functional outcomes. Hence, the interpretation of what constitutes VBHC in head and neck oncology remains challenging.Recent FindingsThis monograph reviews developments in specific aspects of VBHC for HNC patients, including establishment of registries and quality indices (such as infrastructure, process, and outcome indicators). It emphasizes the importance of the multidisciplinary team, "time to treatment intervals," and adherence to guidelines. The discussion addresses major indicators including survival, quality of life and functional outcomes, and adverse events. Also, strengths and weaknesses of nomograms, prognostic and decision models, and variation of care warrant attention.SummaryHealth care professionals, together with patients, must properly define quality and relevant outcomes, both for the individual patient as well as the HNC population. It is essential to capture and organize the relevant data so that they can be analyzed and the results used to improve both outcomes and value.Peer reviewe

    Point-of-care therapeutic drug monitoring of tumour necrosis factor-α inhibitors using a single step immunoassay

    Get PDF
    Therapeutic drug monitoring (TDM) of tumor necrosis factor-α (TNFα)-inhibitors adalimumab and infliximab is important to establish optimal drug dose and maximize treatment efficacy. Currently, TDM is primarily performed with ELISA techniques in clinical laboratories, resulting in a long sample-to-result workflow. Point-of-care (POC) detection of these therapeutic antibodies could significantly decrease turnaround times and allow for user-friendly home-testing. Here, we adapted the recently developed bioluminescent dRAPPID (dimeric Ratiometric Plug-and-Play Immunodiagnostics) sensor platform to allow POC TDM of infliximab and adalimumab. We applied the two best performing dRAPPID sensors, with limit-of-detections of 1 pM and 17 pM, to measure the infliximab and adalimumab levels in 49 and 40 patient serum samples, respectively. The analytical performance of dRAPPID was benchmarked with commercial ELISAs and yielded Pearson's correlation coefficients of 0.93 and 0.94 for infliximab and adalimumab, respectively. Furthermore, a dedicated bioluminescence reader was fabricated and used as a readout device for the TDM dRAPPID sensors. Subsequently, infliximab and adalimumab patient serum samples were measured with the TDM dRAPPID sensors and bioluminescence reader, yielding Pearson's correlation coefficients of 0.97 and 0.86 for infliximab and adalimumab, respectively, and small proportional differences with ELISA (slope was 0.97 ± 0.09 and 0.96 ± 0.20, respectively). The adalimumab and infliximab dRAPPID sensors, in combination with the dedicated bioluminescence reader, allow for ease-of-use TDM with a fast turnaround time and show potential for POC TDM outside of clinical laboratories.</p

    Point-of-care therapeutic drug monitoring of tumour necrosis factor-α inhibitors using a single step immunoassay

    Get PDF
    Therapeutic drug monitoring (TDM) of tumor necrosis factor-α (TNFα)-inhibitors adalimumab and infliximab is important to establish optimal drug dose and maximize treatment efficacy. Currently, TDM is primarily performed with ELISA techniques in clinical laboratories, resulting in a long sample-to-result workflow. Point-of-care (POC) detection of these therapeutic antibodies could significantly decrease turnaround times and allow for user-friendly home-testing. Here, we adapted the recently developed bioluminescent dRAPPID (dimeric Ratiometric Plug-and-Play Immunodiagnostics) sensor platform to allow POC TDM of infliximab and adalimumab. We applied the two best performing dRAPPID sensors, with limit-of-detections of 1 pM and 17 pM, to measure the infliximab and adalimumab levels in 49 and 40 patient serum samples, respectively. The analytical performance of dRAPPID was benchmarked with commercial ELISAs and yielded Pearson's correlation coefficients of 0.93 and 0.94 for infliximab and adalimumab, respectively. Furthermore, a dedicated bioluminescence reader was fabricated and used as a readout device for the TDM dRAPPID sensors. Subsequently, infliximab and adalimumab patient serum samples were measured with the TDM dRAPPID sensors and bioluminescence reader, yielding Pearson's correlation coefficients of 0.97 and 0.86 for infliximab and adalimumab, respectively, and small proportional differences with ELISA (slope was 0.97 ± 0.09 and 0.96 ± 0.20, respectively). The adalimumab and infliximab dRAPPID sensors, in combination with the dedicated bioluminescence reader, allow for ease-of-use TDM with a fast turnaround time and show potential for POC TDM outside of clinical laboratories.</p

    Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors

    Get PDF
    Implementation of vapor/phase dosing of small molecule inhibitors (SMIs) in advanced atomic layer deposition (ALD) cycles is currently being considered for bottom-up fabrication by area-selective ALD. When SMIs are used, it can be challenging to completely block precursor adsorption due to the inhibitor size and the relatively short vapor/phase exposures. Two strategies for precursor blocking are explored: (i) physically covering precursor adsorption sites, i.e., steric shielding, and (ii) eliminating precursor adsorption sites from the surface, i.e., chemical passivation. In this work, it is determined whether steric shielding is enough for effective precursor blocking during area-selective ALD or whether chemical passivation is required as well. At the same time, we address why some ALD precursors are more difficult to block than others. To this end, the blocking of the Al precursor molecules trimethylaluminum (TMA), dimethylaluminum isopropoxide (DMAI), and tris(dimethylamino)aluminum (TDMAA) was studied by using acetylacetone (Hacac) as inhibitor. It was found that DMAI and TDMAA are more easily blocked than TMA because they adsorb on the same surface sites as Hacac, while TMA is also reactive with other surface sites. This work shows that chemical passivation plays a crucial role for precursor blocking in concert with steric shielding. Moreover, the reactivity of the precursor with the surface groups on the non-growth area dictates the effectiveness of blocking precursor adsorption

    High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hypridization

    Get PDF
    Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spotted clones. To assess the applicability of this technique in the diagnosis of (sub)telomeric imbalances, we here describe a blinded study, in which DNA from 20 patients with known cytogenetic abnormalities involving one or more telomeres was hybridized to an array containing a validated set of human-chromosome–specific (sub)telomere probes. Single-copy-number gains and losses were accurately detected on these arrays, and an excellent concordance between the original cytogenetic diagnosis and the array-based CGH diagnosis was obtained by use of a single hybridization. In addition to the previously identified cytogenetic changes, array-based CGH revealed additional telomere rearrangements in 3 of the 20 patients studied. The robustness and simplicity of this array-based telomere copy-number screening make it highly suited for introduction into the clinic as a rapid and sensitive automated diagnostic procedure
    corecore