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Abstract

In this work we study families of quadratic twists of abelian varieties with
complex multiplication by means of the associated Hecke characters, fo-
cusing upon the special cases of elliptic curves and their Weil restrictions.
Following Gross, we say that an elliptic curve E/F with complex multipli-
cation is a Q-curve if it is isogenous to all its Galois conjugates over F .

The Hecke character of an abelian variety A/F is an isogeny invariant
and the Galois action is such that A is isogenous to its Galois conjugate
Aσ if and only if the corresponding Hecke character is fixed by σ. The
quadratic twist of A by an extension L/F corresponds to multiplication
of the associated Hecke characters. This leads us to investigate the Galois
groups of families of quadratic extensions L/F with restricted ramification
which are normal over a given subfield k of F . Our most detailed results
are given for the case where k is the field of rational numbers and F is a
field of definition for an elliptic curve with complex multiplication by K.
In this case the groups which occur as Gal(L/K) are closely related to the
4-torsion of the class group of K.

We analyze the structure of the local unit groups of quadratic fields to
find conditions for the existence of curves with good reduction everywhere.
After discussing the question of finding models for curves of a given Hecke
character, we use twists by 3-torsion points to give an algorithm for con-
structing models of curves with known Hecke character and good reduction
outside 3. The endomorphism algebra of the Weil restriction of an abelian
variety A may be determined from the Grössencharacter of A. We describe
the computation of these algebras and give examples in which A has di-
mension 1 or 2 and its Weil restriction has simple abelian subvarieties of
dimension ranging between 2 and 24.
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Introduction

In this work we study abelian varieties with complex multiplication by
means of the associated Hecke characters, focusing upon the special cases
of elliptic curves and their Weil restrictions.

Let F be an algebraic number field. The Dedekind ζ-function of F ,

ζF (s) :=
∏

p

(
1− 1

NF/Q(p)s

)−1

(0.1)

converges for all s ∈ C with <(s) > 1. There is an analytic continuation of
ζF (s) to the whole complex plane and setting

ZF (s) :=
(
2−r2π−n/2

√
|DF |

)s
Γ
(s

2

)r1
Γ(s)r2ζF (s),

where r1 and r2 are respectively the numbers of real and complex infinite
places of F , n := r1 + 2r2 and DF is the discriminant of the maximal order
of F , we have the functional equation

ZF (s) = ZF (1− s).

In 1920, Hecke [21] proved that similar properties held for L-series of
the form

L(χ, s) :=
∏

p

(
1− χ(p)

NF/Q(p)s

)−1

(0.2)

where χ belongs to a class of a homomorphisms from the ideal group of
F to C∗ containing, but not limited to, those corresponding to characters
of Gal(F ab/F ) via the Artin mapping. In the language of ideles, these χ
are continuous homomorphisms from the idele group of F to C which are
trivial on F ∗. We shall call such homomorphisms Hecke characters.

Deuring [7, 1953] proved that if E is an elliptic curve defined over F
such that the ring of F -rational endomorphisms of E is an order in an imag-
inary quadratic field, there exists a Hecke character χ such that

L(E/F, s) = L(χ, s)L(χ, s), (0.3)

and an analogous result was found for abelian varieties of CM type by
Shimura and Taniyama [57, 1961].

vi
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Serre and Tate [51, 1969], used `-adic representations to prove that if A
is an abelian variety of CM type of dimension g then the conductor of A is
the 2gth power of the conductor of the associated Hecke character χA.

In [55, 1971], Shimura studied abelian varieties A/F of CM type asso-
ciated with Hecke characters of the form

χA := χ0 ◦ NF/k (0.4)

for some subfield k of F . Such varieties are interesting from a class field
theoretic perspective because the group of torsion points of A defined over
an algebraic closure F alg of F generates an abelian extension of k. They
also have the property that for every element σ of Gal(F/k) there exists an
F -rational isogeny from A to Aσ. In analogy with our use of the term Q-
curve (see below), we shall call such abelian varieties k-varieties, and say
that a k-variety is of type 1 or type 2 according to whether the associated
Hecke character satisfies (0.4) or not.

The conjecture of Birch and Swinnerton-Dyer for elliptic curves is that
if the group of F -rational points of E modulo torsion has rank r then
L(E/F, s) has a zero at s = 1 of order r. If E has complex multiplica-
tion and is associated with a Hecke character with ‘nice’ properties, the
conjecture is very much more approachable than in the general case. This
was partial motivation for work of Gross and Rohrlich in the early eighties.

Gross [16] looked in detail at elliptic curves with complex multiplica-
tion by k := Q(

√
−p) for p a rational prime congruent to 3 modulo 4

corresponding to Hecke characters satisfying (0.4) where F is the Hilbert
class field of k and the additional properties that

χσA = χA for all σ ∈ Gal(F/Q) (0.5)

and that χA is ramified only at primes of F dividing p. The term Q-curve
for elliptic curves satisfying (0.5) stems from the work of Gross.

Motivated by Gross’s work, Rohrlich studied the functional equation of
abelian varieties with complex multiplication by k satisfying (0.4) such that

χρ0 = χ0, (0.6)

where ρ denotes complex conjugation on k.
If A and B are Q-curves defined over F then we say that A is Q-

equivalent to B if
χAχ

−1
B = η ◦ NF/Q (0.7)

where η is a quadratic Hecke character of IQ. There is a unique element in
each Q-equivalence class with minimal conductor and the endomorphism
algebra of the Weil restriction of A is determined up to isomorphism by the
equivalence class of A.
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Nakamura [33, 34] described the equivalence classes of Q-curves over
F , and determined the possible endomorphism algebras of their Weil re-
strictions. These articles form the starting point for the investigations of the
present work.

Given an elliptic curve A defined over a field F and associated with a
given Hecke character χA, we are interested in families of twists of A by
quadratic extensions L/F . The general theory is very similiar when A is a
simple abelian variety of CM type but as the conditions for a Hecke charac-
ter to correspond to an abelian variety simplify considerably in dimension
one and any elliptic curve is defined over a ring class field, which has a well
known structure over Q, detailed results and examples are easier to obtain.

If the study of abelian varieties of CM type has been dominated by that
of elliptic curves, the study of elliptic curves (especially in those branches
including explicit examples) has been dominated by curves having a model
over the rationals. Part of the attraction of studying Q-curves of type 1 is
that they share many of the properties of curves defined over a quadratic
field, without the limitation on the CM field. Advances in technology have
also made the general case more amenable to computational investigation.
One of the aims of this work is to make more explicit the study of elliptic
curves with complex multiplication by quadratic fields with non-trivial class
groups.

Overview

The first two chapters are essentially introductory. Some acquaintance
with algebraic number fields and class field theory is assumed, as well as
some algebraic geometry, particularly in the discussion of the Néron model.

In Chapter 1 we begin with a discussion of elliptic curves in which
we outline aspects of the theory we will draw upon later, notably good and
bad reduction and complex multiplication. The second and third sections
treat similar topics for abelian varieties of general dimension, focusing upon
abelian varieties of CM type.

Chapter 2 is devoted to Hecke characters. In the first section we give
the basic definitions and properties of general Hecke characters of an al-
gebraic number field F and then describe the subgroup corresponding to
field extensions. In Section 2.2 we use local field theory and genus theory
to gain more detailed information about the Hecke characters of quadratic
fields, and in Section 2.3 we study the Hecke characters associated with
abelian varieties.

The raison d’être of Chapter 3 is the twisting of abelian varieties de-
fined over a number field F by quadratic extensions L/F . We study the
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Galois groups of families of quadratic extensions with restricted ramifica-
tion which are normal over a given subfield k of F . Our most detailed
results are given for the case where k is an imaginary quadratic field and F
is a field of definition for an elliptic curve with complex multiplication by
an order of k.

Let G := Gal(F/k). If L is a quadratic extension of F normal over
k then L determines a cohomology class in H2(F/k,±1) := H2(G,±1).
The subgroup G[2] := {g ∈ G : g2 = 1} is isomorphic to C×n2 for some
integer n ≥ 0, and we define k′ to be the fixed field FG[2]. Let G be a
maximal set of quadratic extensions L/F such that L/k′ is normal and no
two elements of G represent the same class in H2(F/k′,±1) and let A be
the subset of G consisting of L such that L/k is abelian. It is known (see
Massy [27]), that

|A| ≤ 2n − 1 and |G| ≤ 2m − 1 where m =

(
n+ 1

2

)
. (0.8)

In Section 3.2.2 we describe the groups which may occur as Gal(L/k′) for
L in G and, under the assumption that equality holds in both equations of
(0.8), determine the number of elements of G which have a given Galois
group over k′.

When k is an imaginary quadratic field and F is the Hilbert class field
of k, Nakamura [34] proved that |G|+1 = 2m−n(|A|+1), so that the upper
bound on |G|will be attained whenever the upper bound on |A| is. Studying
Awith the same restrictions on F and k, we find that its cardinality is almost
entirely determined by the 4-torsion in the class group of k. Let r be the
4-rank of the class group of k, and let D be the discriminant of k. We prove
in Proposition 3.3.23 that |A| = 2d − 1 where

n− r − 1 ≤ d ≤ n−max{r, 1}

and in particular that d = n − r except possibly if D is congruent to 4
modulo 8 and is divisible by some prime p ≡ 3 mod 4. Since the density
of imaginary quadratic fields with r = 0 is close to 1/3 (Gerth [12], Fouvry
and Klüners [9]), this shows that there is a large class of field extensions to
which we may apply the results of Section 3.2.2.

In Chapter 4 we apply the theory developed in the first three chap-
ters to K and Q-curves with complex multiplication by an order O of an
imaginary quadratic field K. Combining material from Chapters 2 and 3
we describe the Hecke characters associated with a set of representatives of
each Q-equivalence class of Q-curves over HO, the ring class field of O.
If the discriminant of K is less than −4 then any K-curve of type 2 may
be realized as the quadratic twist of a type 1 curve by an extension L/HO
which is normal over K.
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If 3 either splits or is ramified inO then any elliptic curveE with CM by
O has at least one 3-torsion point P = (xP , yP ) with xP defined over HO.
In Section 4.3.1 we investigate the quadratic twist E ′ of E by y2

P and show
that E ′ is a K-curve of type 1 with good reduction at all primes of HO co-
prime to 3. These curves are of particular interest to us because they offer a
simple algorithm for finding a model of an elliptic curve associated with an
easily described Hecke character. This is the converse to the problem of de-
termining the Hecke character associated with a curve described by a given
model, a question first studied by Weil [64, 1952], before it was known that
all elliptic curves with CM could be associated to a Hecke character.

In Section 4.4 we consider Q-curves with good reduction everywhere.
We prove that there exists a CM elliptic curve with good reduction every-
where overH if and only if the discriminantDK ofK is divisible by at least
two primes congruent to 3 mod 4, and that in this case there exists a Q-curve
with this property. This complements work of Rohrlich [42] which showed
that this condition was necessary and sufficient for the existence of a CM
elliptic curve E with j-invariant jE having good reduction everywhere over
Q(jE).

Let F/k be a normal extension of number fields with Galois group G
and let A be an abelian variety defined over F . The Weil restriction of A
from F to k is an abelian variety WF/k(A) defined over k with the prop-
erty that WF/k(A) ×k F is isomorphic to

∏
σ∈GA

σ. These varieties form
the subject matter of Chapter 5. Suppose that A/F is a simple abelian
variety of CM type, which is F -isogenous to its Galois conjugate Aσ for
all σ in Gal(F/k). We investigate the structure of W := WF/k(A), up
to isogeny, as a product of simple factors and the relationship between the
algebra of k-rational endomorphisms of W and the Hecke character χA as-
sociated with A. Theorem 5.2.16, which extends results of Goldstein and
Schappacher [13] and Nakamura [33], shows among other things that if A
is a k-variety of type 1 then WF/k(A) is k-isogenous to a product of simple
non-isogenous abelian varieties of CM type. Suppose that K is an imagi-
nary quadratic field with Hilbert class field H and let E/H be an elliptic
curve with CM by K. Nakamura [33, 34] determined the possible endo-
morphism algebras for WH/k(E) when E is a k-curve and k is either K
or Q, in particular showing that if E is of type 1 then WH/K(E) is simple
over K. If E is of K-type 1 and has CM by a non-maximal order O of K
then we derive a necessary condition on the discriminants of K and O for
WH/K(E) to be simple. We describe the computation of the endomorphism
algebras End0

k(WF/k(A)) using cohomological and group theory developed
in Chapter 3 and give a number of examples in which A is an elliptic curve
including an application to abelian varieties with CM by biquadratic fields.
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The chapter concludes with a discussion of the analogous case where A has
CM by a cyclic quartic CM field.

Notation

We outline some of our basic conventions and notations below. A page
reference for the definition of the main symbols used is given in the List of
Symbols at the end of this document.

Number fields. Let F be an algebraic number field, with maximal or-
der OF . We denote by IF the group of fractional ideals of OF and by AF

and IF the ring of adeles and the idele group of F respectively. A prime p
of F is a prime ideal of OF , and vp is the associated additive valuation of
F . The completion of F with respect to vp will be denoted Fp, its maximal
order Op and residue class field F p = Fp/πOp where π is an element of Fp

with vp(π) = 1.
Let v be an additive valuation ofOF , and let pv be the place of F associ-

ated with v. If v is non-archimedean, then pv is a finite place of F and hence
a prime, and infinite otherwise. An infinite place of F is real or complex
according to whether Fpv is isomorphic to R or C.

Ideals are generally denoted by gothic script, a, p,m . . . and ideles by
lowercase Greek symbols, α = (αp). Let F/k be an abelian extension
of algebraic number fields. The Artin map Ik → Gal(F/k) resp. Ik →
Gal(F/k) is denoted (F/k; ·) and we use the same symbol NF/k to denote
the norm mapping on field elements, ideles and ideals of F .

If F/k is a normal extension of algebraic number fields then we shall
say that k is a normal subfield of F .

Local fields are denoted Fv where v is the associated additive valuation.
For valuations in both local and global fields we adopt the convention that
the valuation of a uniformizing element is always 1.

By a quadratic field we always mean a quadratic extension of Q. The
discriminant of a quadratic fieldK, which we shall consider as an integer, is
denoted DK . The discriminant of a general field extension F/k is denoted
DF/k.

Abelian varieties. The symbol E is reserved for elliptic curves. A and
B denote abelian varieties, except in Chapter 3 where (after the introduc-
tion) A is used exclusively to denote an extension A/F/k which is abelian
over the base field k. The symbol E/F denotes an elliptic curve defined
over a field F . Endomorphism rings and algebras are denoted by R, S and
T . Isomorphism is denoted by ∼= and isogeny by '.

We say that an abelian variety A/F is a k-variety if k is a normal sub-
field of F such that there are F -rational isogenies between A and Aσ for
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all σ ∈ Gal(F/k). We say that A descends to k if there exists an abelian
varietyB defined over k such thatB×kF is isomorphic toA. IfA descends
to k then A is clearly a k-variety, but a k-variety need not descend to k.

Groups and Galois action. The cyclic group of order n is written Cn
and C×mn denotes the direct product ofm copies of Cn. IfA/F is an abelian
variety, k is a subfield of F and σ an element of Gal(F/k) we denote by Aσ

the Galois conjugate of A by F . The subfield of F fixed by a subgroupG of
Gal(F/k) is denoted FG. In particular, if G is a cyclic group generated by
σ we usually denote its fixed field by F 〈σ〉. If F is a CM field, or if F = C
we denote the complex conjugate of a field element x by xρ or x̄.

Hecke characters. There is considerable diversity of notation regard-
ing Hecke characters in the literature. Our main conventions are as follows:
Let F be a number field with idele group IF . A Hecke character of IF is a
continuous homomorphism

χ : IF → C∗.
which is trivial on F ∗. If the image of χ is contained in the unit circle of C∗
then we say that χ is an ordinary Hecke character. If there exists some finite
abelian extension L/F such that χ is the character of IF corresponding to
L/F by class field theory then we say that χ is a Dirichlet character of IF
(Definition 2.1.14). Let A be an abelian variety of CM type. A Hecke char-
acter determined by A is called a Grössencharacter of A (Definition 2.3.4).

Magma. The computations in this work have been done in versions of
Magma ranging from 2.13 to 2.15.



CHAPTER 1

Abelian Varieties

In this chapter we outline aspects of the theory of abelian varieties over
algebraic number fields, focusing upon abelian varieties with potential good
reduction everywhere, especially those with complex multiplication.

In Section 1.1 we recall some basic facts about elliptic curves, further
details of which may be found in Gross [16] and Silverman [58]. Most of
the abelian varieties we shall encounter later will be isogenous over C to
powers of elliptic curves, however over their minimal fields of definition
they may look very different. One of the broad aims of this chapter is to
gain some understanding of the behaviour of abelian varieties under the
extension and restriction of their base fields.

The introduction to abelian varieties over general fields in Section 1.2
follows Chapters II and IV of Mumford [31], while that of abelian vari-
eties over C and of CM types draws on Lang [26] and various works of
Shimura [54, 55, 56]. Our treatment of good reduction in Section 1.3 largely
follows the article of Serre-Tate [51]. The central theme of this section is
the manner in which the local geometry of an abelian variety A is deter-
mined by the `-adic representation. For abelian varieties of CM type, this
will be reinterpreted in terms of Grössencharacters in Section 2.3.

1.1. Preliminaries on Elliptic Curves

In this section, F will be an algebraic number field, k a subfield of F ,
andE an elliptic curve defined overF . The symbolK will be used to denote
an imaginary quadratic field. We consider any algebraic number field as a
subfield of C. If L/F is a field extension, then EL is the lift of E to L. Let
E1 and E2 be elliptic curves defined over F . A non-zero homomorphism
λ : E1 → E2 is an isogeny and if λ is defined over F then we say that E1

and E2 are isogenous over F or F -isogenous.

Definition 1.1.1. Let k be a subfield of F such that F/k is normal. We say
that E is a k-curve if Eσ is isogenous to E over F for all σ in Gal(F/k).

A homomorphism E → E is called an endomorphism of E, and the
ring of F -rational endomorphisms is denoted EndF (E).

1



2 1. ABELIAN VARIETIES

Let K be an imaginary quadratic field. An elliptic curve E has complex
multiplication, or CM by an order O of K if

EndC(E) ∼= O, (1.1)

and if this is the case, K(jE) = HO, where jE is the j-invariant of E and
HO is the ring class field of O. If E does not have complex multiplication
by an order of any imaginary quadratic field then EndC(E) ∼= Z. The
invertible elements of the endomorphism ring of E form the automorphism
group Aut(E) of E. If E does not have complex multiplication by either
Q(
√
−3) or Q(

√
−4) then Aut(E) = {±1}.

Proposition 1.1.2. Let E be an elliptic curve defined over a number field F
and let L/F be a quadratic extension. There exists a unique elliptic curve
EL defined over F such that E and EL are non-isomorphic over F but
become isomorphic over L.

Proof. See Propositions X.5.3 and X.5.4 of Silverman [58]. �

We say that EL is the quadratic twist of E by L and if m is an element
of F with the property that L = F (

√
m), then we also call EL the quadratic

twist of E by m.

Example 1.1.3. Suppose that E has a model y2 = x3 + ax+ b over F , and
L = F (

√
m). Then EL has a model y2 = x3 +m2ax+m3b.

Proposition 1.1.4. LetK be an imaginary quadratic field with discriminant
DK 6= −3,−4, and let O be an order of K. Let F/Q be normal, and
suppose that E/F and E ′/F are non-F -isogenous elliptic curves with CM
by O. Then there exists a unique quadratic extension L/F such that E and
E ′ are isogenous over L and if E and E ′ are both Q-curves, then L/Q is
normal.

Conversely, let E be a Q-curve and let L be any quadratic extension of
F . Then EL is a CM elliptic curve defined over F which is a Q-curve if and
only if L/Q normal.

Proof. This is a special case of Corollary 2.3.13 which we prove in the next
chapter. �

Let E(F ) denote the points of E with F -rational coordinates. It is well
known that E(F ) has the structure of an abelian group. (See Section III.2
of Silverman [58] for a description of the group structure.) The subgroup
of E(F ) consisting of points of finite order is denoted by Etors(F ) and by
the Mordell-Weil theorem (see Silverman [58] Theorem VIII.6.7), E(F ) is
finitely generated.

Definition 1.1.5. The Mordell-Weil rank of E/F is the integer r such that

E(F ) ∼= Etors(F )× Zr.
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1.1.1. Good Reduction of Elliptic Curves. Let E be an elliptic curve
defined over a number field F . A general Weierstrass equation for E/F has
the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.2)

and discriminant

∆E := −b22b8 − 8b34 − 27b26 + 9b2b4b6, (1.3)

where

b2 := a2
1 + 4a2,

b4 := 2a4 + a1a3,

b6 := a2
3 + 4a6,

b8 := a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

We say that E is integral if each coefficient ai belongs to OF and p-
minimal if

vp(∆E) = min{vp(∆)},

where ∆ runs through the discriminants of integral Weierstrass equations
for E.

Let p be a prime of F . Let Ep be the curve defined by reduction of a
p-minimal Weierstrass equation modulo p. Then E has good reduction at p
if Ep is an elliptic curve over Fp. Otherwise, Ep has a singularity and we
say that E has bad reduction at p.

Definition 1.1.6. Suppose that E/F has bad reduction at p and let Ens
p be

the non-singular part of Ep. Then E has multiplicative reduction at p if

Ens
p (F p) ∼= F

∗
p

and additive reduction at p if

Ens
p (F p) ∼= F

+

p .

Definition 1.1.7. Suppose that E has multiplicative reduction at p. Then
the singularity of Ep is a node, and we say that E has split multiplicative
reduction if the slopes to the tangent lines of this node are in Fp.

The most well known criterion for good reduction at p is that p must not
divide the discriminant of a minimal Weierstrass equation for E. We shall
discuss some other criteria in Section 1.3.
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1.1.2. Lattices and Elliptic Curves.

Definition 1.1.8. We shall use the term lattice in two closely related senses:
a) Let V be a finite dimensional vector space over R. A lattice in V is

a finitely generated Z-module contained in V which spans V over
R.

b) Let R be a Dedekind domain with field of fractions F and let V be
a finite-dimensional vector space over F . An R-lattice in V is a
finitely generated R-module contained in V which spans V over F .

The symbol Λ will be used for lattices of both kinds.

Lemma 1.1.9 (Weil [66] p. 81). Let Λ be a Z-lattice in a number field F .
Then the subring of elements a of F such that aΛ ⊆ Λ is an order OΛ of F .

Let F be an algebraic number field, Λ a Z-lattice in F and p a rational
prime. If Fp := F ⊗Q Qp and Λp := Λ⊗Z Zp, then Λp is a Zp-lattice in Fp.
We can consider any element x of Fp as a vector (x1, . . . xn) with xi in Fpi

,
where pi runs through the primes of F dividing p. Let AF denote the ring
of adeles of F , and IF the group of ideles. Since AF = AQ ⊗Q F , we can
express any finite idele α of IF as a product

α =
∏
p

αp

with each αp in Fp.

Proposition 1.1.10. Let F,Λ and α be as above. There exists a unique
Z-lattice Λ′ in F such that

Λ′p = αpΛp, (1.4)

for all rational primes p. We set αΛ := Λ′.

Proof. By Theorem V.2 of Weil [66], there exists such a Z-lattice Λ′ in F
if and only if Λ′p = Λp for all but finitely many primes p, and if it exists Λ′

is uniquely defined. Let OΛ be the order of F defined in Lemma 1.1.9 and
let D be the discriminant of OΛ. If p is coprime to D, and u is an element
of F such that up is a local unit of Fp for all p dividing p then u belongs
to O ⊗Z Zp hence uΛp ⊆ Λp. The set of all primes p such that p|D or
vp(αp) > 0 for some p dividing p is finite, so we are done. �

Definition 1.1.11. Let UF be the subgroup of ideles α of IF with trivial
infinite components such that vp(αp) = 0 at every finite place p of F , and
let F ∗∞ be the subgroup of ideles α for which αp = 1 for all finite places p
of F . We define

UΛ := {α ∈ UF : αΛ = Λ}. (1.5)
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If OΛ = OF then by the argument in the proof of Proposition 1.1.10 it
follows that UΛ = UF .

Let E be an elliptic curve defined over C. There is a lattice Λ of C and
a complex analytic isomorphism of groups f : E(C) → C/Λ. For any
isogeny λ : E → E ′ there exists an analytic homomorphism ζ such that the
diagram

E(C)
f //

λ
��

C/Λ

ζ
��

E ′(C)
f ′ // C/Λ′

commutes. We identify E with the complex torus C/Λ.

Definition 1.1.12. Two lattices (resp. Z-lattices) Λ1 and Λ2 in C (resp. F )
are homothetic if there exists some element x of C∗ (resp. F ∗) such that
Λ1 = xΛ2.

Proposition 1.1.13. Let Λ1 and Λ2 be lattices in C and let E1 and E2 be
elliptic curves defined over C such that Ei ∼= C/Λi for i = 1, 2. Then E1

and E2 are isomorphic over C if and only if Λ1 and Λ2 are homothetic.

Proof. See Silverman [58] Corollary VI.4.1.1. �

The following theorem relates Z-lattices in an imaginary quadratic field
K with elliptic curves with complex multiplication by an order of K via an
embedding of K in C.

Theorem 1.1.14 (Lang [26] Theorem 1.4.1). Let K be an imaginary qua-
dratic field, let θ be an embedding of K in C and let Λ be a lattice in K.
Then θ(Λ) is a lattice in C and C/θ(Λ) is isomorphic to an elliptic curve
with CM by an order of K.

Let E/C be an elliptic curve with CM by an order O of K. Then there
exists a lattice Λ in K such that C/θ(Λ) ∼= E, and O is the subring of
elements x of K such that xΛ ⊂ Λ.

Let NΛ be the open subgroup UΛK
∗
∞K

∗ of IK/K
∗. By the Existence

Theorem of global class field theory, (see Tate [61] p. 172), there exists a
unique abelian extension F/K such that

NF/K(IF/F
∗) = NΛ. (1.6)

Proposition 1.1.15 (Shimura [56] Theorem 5.5). Let Λ be a lattice in an
imaginary quadratic field K, let E be an elliptic curve which is isomorphic
to C/θ(Λ), and let F be the abelian extension of K defined in (1.6). Then
F = K(jE), where jE is the j-invariant of E.
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Since K(jE) is the ring class field of the order O of K isomorphic to
EndC(E) we can set

UO := UΛ and NO := NΛ. (1.7)

1.1.3. Reduction of Isogenies. This section develops theory which we
will need for the definition of the Grössencharacter of an elliptic curve with
complex multiplication. The central result is Proposition 1.1.22. Similar re-
sults for abelian varieties of CM type of any dimension will be discussed in
Section 1.3. See Definition 1.2.2 and below for basic definitions concerning
isogenies.

Lemma 1.1.16. Let F be a number field, p an ideal of OF and suppose E
and E ′ are elliptic curves defined over F with good reduction at p. Then
if φ : E → E ′ is an isogeny of degree m defined over F alg, reduction at p
defines an isogeny of degree m

φp : Ep → E ′p,

defined over F
alg
P where P is a prime of F alg dividing p.

Proof. See Silverman [59] Proposition II.4.4. �

Let L := F alg. As a consequence of the preservation of degrees, reduc-
tion at p defines an injection ϑ of HomL(E,E ′) into HomLP

(Ep, E
′
p).

Lemma 1.1.17. An endomorphism of Ep is in the image of ϑ if and only if
it commutes with every element of ϑ(EndL(E)).

Proof. This is a special case of Proposition 1.3.22. See Lemma II.5.2 of
Silverman [59] for proof in the elliptic curve case. �

Definition 1.1.18. Let E be a curve with CM by an order O of K. Let
HO be the ring class field associated with O and let h := [HO : K]. Let
{j1, . . . jh} run through the set of possible j-invariants of elliptic curves
with CM by O, and for 1 ≤ i < k ≤ h, let ni,k := NHO/Q(ji − jk).

We say that a rational prime p is E-excluded if p satisfies one or more
of the following conditions:

a) p is ramified in HO/Q,
b) E has bad reduction at a prime lying over p,
c) p divides ni,k for some i, k.

Let Λ be a lattice in K corresponding to an elliptic curve E, let a be a
non-zero fractional ideal of OK , and let ā denote the ideal class of a. If b
is another ideal in ā the lattices b−1Λ and a−1Λ are homothetic, and hence
correspond to isomorphic elliptic curves. We write ā ∗ E for the curve
corresponding to a−1Λ.
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If a is an integral ideal, then Λ ⊂ a−1Λ and so the map sending z+Λ to
z + a−1Λ is a homomorphism C/Λ → C/a−1Λ which induces an isogeny

E → ā ∗ E (1.8)

of degree NK/Q(a), (see Silverman [59] Corollary II.1.5).
For the remainder of this section, we let H be the Hilbert class field of

K.

Lemma 1.1.19. Let E/H be an elliptic curve with CM by OK and let p be
a rational prime which is not E-excluded, lying under the degree 1 prime
p of OK . Let P be a prime of H lying over p. Let φ : E → p̄ ∗ E be the
isogeny of (1.8). Then φP is purely inseparable of degree p.

Proof. See Silverman [59] p. 127. �

Lemma 1.1.20. Let a be a non-zero fractional ideal of K and let σ :=
(H/K; a) be the Artin automorphism ofH/K associated with a. Then jσE =
jā∗E and hence over Halg

Eσ ∼= ā ∗ E.

Proof. See Silverman [59] Theorem II.4.3. �

Lemma 1.1.21 (Silverman [58] Corollary II.2.12). Let C and C ′ be smooth
algebraic curves defined over a field of characteristic p > 0 and suppose
that η : C → C ′ is a map of inseparable degree m, and let f be the mth-
power Frobenius. Then η factors as η = ζ ◦ f where ζ is separable.

Proposition 1.1.22 (Silverman [59] Proposition II.5.3.). LetE be an elliptic
curve with CM byOK and let p be a rational prime which is notE-excluded,
lying under the degree 1 prime p of K. Let P be a prime of H lying over p
and set σ := (H/K; p). Then there exists an isogeny φσ,p : E → Eσ whose
reduction modulo P is the pth power Frobenius map f .

Proof. Let φ : E → Eσ be the isogeny obtained by composing

E
λ // p̄ ∗ E η // Eσ,

where λ and η are the maps defined in (1.8) and Lemma 1.1.20 respectively.
Then φP is a purely inseparable map of degree p by Lemma 1.1.19, and by
Lemma 1.1.21, factors as φP = ζ ◦ f , where ζ : E

(p)
P → Eσ

P is a separable
isogeny of degree 1.

Since Eσ
P = E

(p)
P by definition, we are done if we can show that ζ is the

reduction of an automorphism of Eσ. Since reduction of endomorphisms
preserves degree, it is enough to show that ζ is the reduction of an endomor-
phism of Eσ. By Lemma 1.1.17 this is true if and only if ζ commutes with
the reduction modulo P of every element of End(Eσ). Let α be an element
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of End(E). We may regard ασ as the corresponding element of End(Eσ).
Now by Silverman [59] p. 132,

f ◦ αP = (ασ)P ◦ f, (1.9)

and by Corollary II.1.1.1 of Silverman [59]

φ ◦ α = ασ ◦ φ

hence
φP ◦ αP = (ασ)P ◦ φp

and the result follows since φP = ζ ◦ f .
Let ξ be the automorphism of Eσ such that ξP = ζ . We define

φσ,p := ξ−1 ◦ φ = ξ−1 ◦ η ◦ λ.

�

Proposition 1.1.23. Retaining the notation of Proposition 1.1.22, suppose
that E is a Q-curve. Then for any element σ of Gal(H/K) there exists a
rational prime p such that φσ,p : E → Eσ is an H-isogeny.

Proof. We let p be a prime which is notE-excluded and consider the factors
of φσ,p = ξ−1 ◦ η ◦ λ one by one. From the definitions we can see that ξ is
an H-endomorphism of Eσ and that the map λ of (1.8) from E to p̄ ∗ E is
defined over H .

It remains to check the isomorphism η : p̄ ∗ E → Eσ. We know that
p̄∗E is isogenous to E overH and that E is isogenous to Eσ overH , hence
composing the isogenies and applying Lemma 1.1.20 gives the desired H-
rational isogeny. �

1.2. Abelian Varieties

Let k be a field. In this section k may be either an algebraic number
field, the completion of an algebraic number field, or a finite field.

Let V be an algebraic variety defined over k. We denote by V (k) the
set of points of V defined over k. We say that V is a group variety over k if
the set of points V (kalg) admits a group law m : V × V → V such that m
and the inverse map are both morphisms of varieties.

Definition 1.2.1. An abelian variety is a projective group variety.

The group law on an abelian variety is commutative (see Mumford [31]
p. 44), hence it is customary to write it additively.

If a subvariety of A is an abelian variety, then we call it an abelian
subvariety. We say that A is simple if none of its proper subvarieties are
non-trivial abelian varieties.
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Definition 1.2.2. Let A and B be abelian varieties over k. A homomor-
phism ϕ : A→ B is an isogeny if it is surjective, with finite kernel.

In particular if A and B are isogenous, written A ' B, then they have
the same dimension.

The degree of an isogeny is the degree of the extension k(A)/k(ϕ∗(B)),
where ϕ∗ denotes the pullback of ϕ. The separable degree of ϕ is the degree
of the separable part of the extension and the cardinality of the kernel of ϕ.

Definition 1.2.3. Let k and A be as above and let M be a normal subfield
of k. We shall say that A is an M -variety if there exists a k-rational isogeny
λσ : A→ Aσ for all σ in Gal(k/M).

For any positive integer m, let mA denote multiplication by m on A,
that is, the map sending a point P of A to the point

P + · · ·+ P︸ ︷︷ ︸
m times

and let A[m] := kermA.

Proposition 1.2.4 (Mumford [31] p. 63). Let k be a field of characteristic p,
let m be a positive integer, and let A/k be an abelian variety of dimension
g. The map mA : A→ A is an isogeny of degree m2g which is separable if
and only if m is coprime to p (including when p = 0).

It follows that for all m, A[m] is isomorphic to (Z/mZ)i over kalg for
some integer i ≤ 2g with equality when m and p are coprime.

Let ϕ : A→ B be an isogeny, and let m be an integer such that kerϕ ⊆
A[m]. Such an m must exist, since kerϕ is finite and closed under +. Then
there exists an isogeny ϕ̂ : B → A such that

ϕ ◦ ϕ̂ = mB, ϕ̂ ◦ ϕ = mA.

Theorem 1.2.5 (Poincaré’s Complete Reducibility Theorem).
If A is an abelian variety and B is an abelian subvariety of A then there
exists an abelian subvariety B′ such that A is isogenous to B ×B′.

Proof. See p. 173 of Mumford [31]. �

It follows that for any abelian variety A of dimension g there exist sim-
ple, pairwise non-isogenous abelian varieties A1, . . . , An such that

A ' Aa1
1 × · · ·Aan

n .

The group of endomorphisms of A defined over k is denoted Endk(A).
Since Endk(A) contains a subring isomorphic to Z, we can consider the
endomorphism algebra of A,

End0
k(A) := Endk(A)⊗Z Q.
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For any ring T we let Ma(T ) denote the ring of a× a matrices over T .

Proposition 1.2.6. If A is simple then End0
k(A) is a division algebra. If A

is isogenous to a product Aa1
1 × · · · × Aan

n with the Ai simple and pairwise
non-isogenous, then

End0
k(A) ∼=

n∑
i=1

Mai
(Ti),

where Ti = End0
k(Ai).

Proof. If A is simple, then any non-zero endomorphism of A is an isogeny
and hence has an inverse in End0

k(A). It is clear that Hom(Ai, Aj) = 0 for
all i 6= j and the result follows. �

Proposition 1.2.7 (Mumford [31] p. 176). Let A and B be any two abelian
varieties. Then Hom(A,B) is a finitely generated free abelian group of
rank at most 4 dimA dimB.

In particular, if A is an abelian variety of dimension g then End0
k(A) is

an algebra of dimension at most 4g2 over Q.

Proposition 1.2.8 (Mumford [31] p. 182). LetA be a simple abelian variety
of dimension g over k and let K be the centre of End0

k(A). Suppose that
[K : Q] = n and [End0

k(A) : K] = d2. Then nd divides 2g and if char k =
0 then nd2 divides 2g.

A CM field K is an imaginary quadratic extension of a totally real field
K0. If K and L are CM fields, so are the normal closure of K and the
compositum LK.

Lemma 1.2.9 (Shimura [54] p. 38). Let A and K be as in the previous
proposition. Then K is either a totally real number field, or a CM field.

Definition 1.2.10. If A/k is an abelian variety of dimension g, we say that
A is of CM type if End0

k(A) contains a CM field K of degree 2g.

Proposition 1.2.11 (Shimura [54] Proposition 3). Let k be a number field
and let A/k be an abelian variety of CM type. There exists a simple abelian
variety B of CM type such that A×k C is isogenous to Bn for some integer
n.

1.2.1. CM Types. For any algebraic number field F , we consider the
algebraic closure F alg of F to be embedded in the complex numbers. Let ι
be an embedding F ↪→ C. If F is normal over Q then any other embedding
will have the form ισ for some σ ∈ Gal(F/Q) where ισ(x) := ι(xσ) for
any element x of F .
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Definition 1.2.12. A CM type is a pair (K,Φ) such that K is a CM field of
degree 2g over Q and Φ = {φ1, . . . , φg} is a set of embeddings of K into C
such that no two φi are complex conjugate.

We frequently identify Φ with the g × g diagonal matrix with entries
{φ1, . . . , φg}. This allows us to define

det Φ(x) :=
∏

φi(x),

tr Φ(x) :=
∑

φi(x).

Suppose that k is a subfield of K which is also a CM field, and let
(k,Ψ) be a CM type. Let ΨK/k be the set of homomorphisms K → C
which induce an element of Ψ on k. Then (K,ΨK/k) is a CM type, which
we call the CM type lifted from (k,Ψ). A CM type (K,Φ) is simple if it
has not been lifted from a proper subfield of K.

Let L be the field generated by the elements {tr Φ(x) : x ∈ K}. Let
F be the normal closure of K, set G = Gal(F/Q), and let GK and GL be
the subgroups of G corresponding to K and L respectively. We consider
the φi in Φ as elements σ of G by identifying ισ with σ. Let S := ∪GKφi
and S−1 := {s−1 : s ∈ S}. By definition, GL consists of the elements of G
which fix S, and consequently there exist elements ψi for i = 1, . . . ,m of
G such that S−1 = ∪GLψi.

Definition 1.2.13. Let L be as above and let Ψ := {ψ1, . . . , ψm}. The pair
(L,Ψ) is a CM type, which we call the reflex of (K,Φ).

We observe that det Ψ(x) is an element of K∗ for all x in L∗.
If K/Q is abelian then the reflex of a simple CM type (K, {φi}) is

(K, {φ−1
i }) where as above, we identify the φi with elements of Gal(K/Q).

In particular, if K is an imaginary quadratic field, then (K,Φ) is its own
reflex.

Proposition 1.2.14 (Shimura [54] p. 63). Let (K,Φ) be a CM type with
reflex (L,Ψ). Then (L,Ψ) is simple, and if (K,Φ) is simple, it is the reflex
of (L,Ψ).

1.2.2. Abelian Varieties over C. LetA be an abelian variety of dimen-
sion g defined over C. Then there exists a lattice Λg in Cg and a holomorphic
map f such that the sequence

0 → Λg → Cg f→ A→ 0, (1.10)

is exact. It follows that any element γ of End0
C(A) corresponds to a C-linear

transformation Γ of Cg, such that

Γ(Λg) ⊆ Λg and f ◦ Γ = γ ◦ f. (1.11)
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The map sending γ to Γ can be uniquely extended to a representation S
of EndC(A) in Mg(C), known as the analytic representation. This induces
a representation R on EndQ(Λ ⊗ Q) ∼= M2g(Q) known as the rational
representation, and R is equivalent to the direct sum of S and its complex
conjugate S̄, (see for example Shimura [54] Section 3.2). Suppose that
End0

C(A) contains a subalgebra isomorphic to a CM field K of degree 2g
and let θ be an embedding of K in End0

C(A).

Lemma 1.2.15 (Shimura [54] p. 39). Let {φ1, . . . , φ2g} be the full set of
embeddings of K into C. The representation R ◦ θ is equivalent to the
direct sum of the φi.

It follows that S ◦ θ must be equivalent to the direct sum of g distinct φi
say {φ1, . . . , φg} no two of which are complex conjugate.

Definition 1.2.16. Let Φ := {φ1, . . . , φg}. We say that (A, θ) is of CM type
(K,Φ).

By (1.10), S(γ) maps QΛg to itself for all γ in End0
C(A), and because

[QΛg : Q] = 2g, there is an isomorphism h : K → QΛg, which extends to
an R-linear isomorphism K ⊗Q R → Cg. Let Λ := h−1(Λg). Then Λ is a
Z-lattice in K, and the following diagram is commutative, with exact rows.

0 // Λ //

��

KR //

h

��

KR/Λ //

��

0

0 // Λg
// Cg

f // A // 0

Proposition 1.2.17. If (A, θ) and (A′, θ′) are varieties of the same CM type
(K,Φ) then A and A′ are isogenous over C.

Proof. Let f and h be as in the diagram above, let Λ and Λ′ be Z-lattices in
K corresponding to A and A′ respectively, and let m be an integer such that
mΛ ⊂ Λ′. Then mh(Λ) ⊂ h(Λ′) so there is a surjective homomorphism λ
from Cg/h(Λ) to Cg/h(Λ′) and f ◦ λ is an isogeny. �

Proposition 1.2.18 (Lang [26] Proposition 1.3.4). Let (A, θ) be an abelian
variety of CM type (K,Φ), and suppose that B is a simple abelian variety
with CM by a subfield K0 of K such that AC is isogenous to Bn for some
integer n ≥ 1. Then the CM type of A is lifted from the CM type of B.

By Proposition 1.2.14 such a B always exists. This means that if a CM
type is simple then the varieties of that type are simple over C.

Theorem 1.2.19. Let (K,Φ) be a CM type, let g := [K : Q]/2 and let Λ
be a Z-lattice in K. Then Φ(Λ) is a lattice in Cg and Cg/Φ(Λ) is complex-
analytically isomorphic to an abelian variety A of CM type (K,Φ).
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Proof. This is a composite of Lang [26] Theorems 1.4.1 and 1.4.4. �

Combining this theorem with Proposition 1.2.17 shows that every CM
type defines a unique isogeny class of abelian varieties over C.

Definition 1.2.20. Let F/k be a field extension and let A be an abelian
variety defined over F . We say thatA descends to k if there exists an abelian
variety A0 defined over k such that A0 and A are isomorphic over F .

Proposition 1.2.21 (Lang [26] Proposition 5.1.1). For any abelian variety
A/C of CM type (K,Φ) there exists an algebraic number field k such that
A descends to k.

Definition 1.2.22. Let F be an absolutely normal algebraic number field
and let (A, θ) be an abelian variety defined over F of CM type (K,Φ).
Let G be the subgroup of Gal(F/Q) consisting of the elements σ such that
(Aσ, θσ) is isomorphic to (A, θ) over C. Let k be the fixed field of G. We
say that k is the field of moduli of A.

Remark 1.2.23. The field of moduli of an elliptic curve E with complex
multiplication by an order of K is K(jE). This classical result is a conse-
quence of the Main Theorem of Complex Multiplication: see for example
Silverman [59] for the theorem when g = 1 or Shimura [54, 56] for general
g.

Proposition 1.2.24 (Shimura [54] Proposition 30). Let (K,Φ) be a CM type
with reflex (K ′,Φ′), and suppose that A is an abelian variety defined over
k such that (AC, θ) is of type (K,Φ). If End0

k(A) is isomorphic to K then k
contains K ′. If A is simple over k then the converse holds.

1.3. Good Reduction of Abelian Varieties

Given an elliptic curve E defined over a number field k, we defined the
reduction of E at a prime p of k in terms of a p-minimal Weierstrass model
E for E. Given an abelian variety A/k we can follow a similar procedure
using a scheme N called the local Néron model for A at p. Just as we said
that E had good reduction at p if E defined an elliptic curve over Fp, if the
special fibre of N is an abelian variety then A has good reduction at p. We
shall follow this path in Section 1.3.2.

It is also possible to take a very different approach via the `-adic rep-
resentation of A which is a homomorphism ρ` : Gal(kalg/k) → M2g(Q`),
where ` is a rational prime coprime to Nk/Q(p). Let P be a prime of kalg

dividing p. In this case, we say that A has good reduction at p if ρ` maps the
inertia group at P to 1. To develop the tools for this approach we review the
theory of ramification, inertia and decomposition groups in Section 1.3.1,
and in Section 1.3.3 we look at Tate modules and `-adic representations,
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and define the conductor of A/k in the case where A has good reduction
everywhere over a finite extension of k.

1.3.1. Local Ramification Groups. Let Fv be a local field with residue
characteristic p. Let xv be a uniformizing element for the unique prime ideal
of Ov. We take v to be the additive valuation on F such that v(xv) = 1.
Similarly, if F is a number field and p is a prime ideal of F with uniformiz-
ing element xp we normalize the valuation vp by setting vp(xp) = 1.

Definition 1.3.1. Let kw be a local field with residue characteristic p, and
let Fv be a finite Galois extension of kw with valuation v. The ith ramifica-
tion group of Fv/kw is

Gi(Fv/kw) := {σ ∈ Gal(Fv/kw) : v(σ(x)− x) ≥ i+ 1, for all x ∈ Ov}.

We extend the definition of the ith ramification group of Fv/kw to real
numbers t ≥ −1 by setting Gt := Gi for all t in (i − 1, i]. Let [Gi : Gj]
denote the index of Gj in Gi for j ≥ i, and for j < i set

[Gi : Gj] := [Gj : Gi]
−1.

We then define

ϕ(t) :=

∫ t

0

1

[G0 : Gy]
dy. (1.12)

By the Hasse-Arf Theorem (see p. 76 of Serre [49]), if i is an inte-
ger such that Gi does not equal Gi+1 then ϕ(i) is an integer. We refer to
Serre [49] IV.3 for further discussion and proofs of the properties of ϕ and
its inverse ϕ−1, noting that ϕ−1(i) is an integer for all integers i ≥ −1.

Definition 1.3.2. The ith ramification group of Fv/kw in the upper number-
ing G(i)(Fv/kw) is equal to Gj(Fv/kw) where j = ϕ−1(i).

If Lv′ is a profinite Galois extension of kw, then we define the upper and
lower ramification groups of Lv′/kw by

Gn(Lv′/kw) := lim
←
Gn(Fv/kw) and G(n)(Lv′/kw) := lim

←
G(n)(Fv/kw),

where Fv runs through the finite Galois extensions of kw contained in Lv′ .
Let Ow be the ring of elements x of kw with w(x) ≥ 0 and let Uw be

the group of invertible elements of Ow. Set U (0)
w := Uw and for any positive

integer i define
U (i)
w := {x ∈ k∗w : w(x− 1) ≥ i}. (1.13)
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Proposition 1.3.3 (Serre [49] p. 228). Let Fv/kw be a finite abelian exten-
sion of local fields of characteristic p > 0, set G := Gal(Fv/kw) and let
ψ : k∗w → G be the local Artin homomorphism. Then

ψ(U (i)
w ) = G(i)(Fv/kw).

Definition 1.3.4. Let F be an algebraic number field with algebraic closure
F alg and let L be a profinite extension of F contained in F alg. Let P be a
prime of L which divides p, and let G := Gal(L/F ). The decomposition
and inertia groups of P are the subgroups of G given by

GD(P) := {σ ∈ G : Pσ = P},
GT (P) := {σ ∈ G : vP(σ(x)− x) ≥ 1 for all x ∈ L},

respectively.

We recall that
GD(P) ∼= Gal(LP/Fp),

and
GD(P)/GT (P) ∼= Gal(LP/F p).

1.3.2. Néron Models. Details and proofs of the material in this section
may be found in Bosch, Lütkebohmert and Reynaud [5] or Artin [3]. In
Chapter IV of [59] Silverman gives a detailed exposition of Néron models
of elliptic curves.

Let k be a number field, let p be a finite place of k, let kp be the com-
pletion of k with respect to p, let Op be the maximal order of kp, and kp its
residue class field. Let S be an Op-scheme, (strictly, a Spec(Op)-scheme).
The generic fibre of S is

S ×Op kp,

and the special fibre of S is
S ×O kp.

Definition 1.3.5. Let S be a scheme. A group scheme over S is a scheme
which represents a functor from the category of schemes over S to the cat-
egory of groups.

See Shatz [53] p. 30, or Silverman [59] p. 306 for more details. An
abelian scheme is a group scheme which is a relatively compact continu-
ously varying family of abelian varieties.

Definition 1.3.6. Let A be an abelian variety defined over k. We say that
A has good reduction at p if there exists an abelian scheme Ap defined over
Spec(Op) such that A is isomorphic to the generic fibre Ap ×Op kp.
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Definition 1.3.7. A Néron model for A at p is a smooth group scheme N of
finite type over Op such that

N ×Op kp
∼= A,

with the universal property that for any smooth Op-scheme Y , and kp-
rational map λ : Y → A, there is a unique extension of λ to a morphism of
schemes λ : Y → N .

Theorem 1.3.8. For any place p of k there exists a local Néron model
N(A, p) of A at p which is unique up to isomorphism.

By the universal property of the Néron model, it follows thatA has good
reduction at p if and only if N(A, p) is an abelian scheme.

Lemma 1.3.9 (Artin [3] Lemma 1.16). Let S be a scheme and let N be
a smooth group scheme over S. There exists an open subgroup N0 called
the connected component such that for any algebraically closed field k the
fibres N0 ×S k are the connected components of the fibres N ×S k.

If N is an abelian scheme then N is equal to N0.

Proposition 1.3.10. Let N := N(A, p). Then N0 ×Op kp is the extension
of an abelian variety by a linear group T × U where T is a torus and U is
unipotent. Moreover there exists a finite extension F/k such that if P is a
prime of F dividing p and NF := N(AF ,P) then

N0
F ×OP

FP
∼= A′ × T ′,

where A′ is an abelian variety and T ′ is a torus.

Proof. For the first statement, see Section 5 of Rosenlicht [43] and for the
second, see Théorème 3.6 of Grothendieck [18]. �

Example 1.3.11. Let k be a number field, let E/k be an elliptic curve with
bad reduction at p, and let N := N(E, p). Then N0(kp) = Ens(kp), and
if E has multiplicative reduction then N0 is a torus of dimension 1. (See
Silverman [59] Corollary 9.1 and 9.2.) The second part of the proposition
tells us that EL has either good or multiplicative reduction at every prime
of some finite extension F of k.

Definition 1.3.12. An abelian varietyA over k has potential good reduction
at p if there exists a finite extension F/k such that AF has good reduction
at every prime P of F dividing p.

If A has good reduction at every prime p of k, then we say that A has
good reduction everywhere or GRE.
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1.3.3. Tate Modules. Let k be a field, and letA/k be an abelian variety
of dimension g. By Proposition 1.2.4, and Mumford [31] Chapter IV, the
group A[m] of m-torsion points of A over kalg is a free Z/mZ-module of
rank 2g. We define

T`(A) = lim
←
A[`n], V`(A) = T`(A)⊗Z`

Q`, (1.14)

and call T`(A) the `-adic Tate module of A. By the definition of the inverse
limit there are isomorphisms

T`(A) ∼= lim
←
n

(Z/`nZ)2g = Z2g
` , V`(A) ∼= Q2g

` .

Definition 1.3.13. Let G := Gal(kalg/k) and let ρ` := ρ`(A) be the repre-
sentation

ρ` : G→ Aut(T`(A))

defined by the action of G on T`(A). We call ρ` the `-adic representation
associated with A.

Suppose that k is a number field, let p be a prime of k, let P be a prime
of kalg dividing p and set

G(i)(p) := G(i)(kalg
P /kp).

Proposition 1.3.14 (Serre-Tate [51] Theorems 1 and 2). Let ` be a rational
prime which is coprime to Nk/Q(p). The variety A has good reduction at p
if and only if GT (p) acts trivially on T`(A), and potential good reduction at
p if and only if ρ`(GT (p)) is finite.

We define

Ap := N(A, p)×Op kp, and Ãp := N(A, p)×Op kp. (1.15)

Let p be a prime of k at which A has good reduction and let ` be a
rational prime which is coprime to Nk/Q(p). Then

T`(A) ∼= T`(Ãp). (1.16)

Let A, k, p and ` be as in Proposition 1.3.14 and suppose that A has
potential good reduction at p. Let F be a finite Galois extension of k such
that B := AF has good reduction at every prime P of F dividing p. Then
G := Gal(FP/kp) acts on B̃P via its action on FP and since there are
canonical isomorphisms T`(B̃P) ∼= T`(B) ∼= T`(A) we can define an action
of G on T`(A).

Let Gi be the ith ramification group of FP/kp, set ni := |Gi| and define

fp :=
∑
i

ni
n0

(
2g − dimT`(A)Gi

)
, (1.17)
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where g := dimA.

Lemma 1.3.15. With notation as above, fp is a non-negative integer inde-
pendent of the choice of `.

Proof. Let φA be the character of the `-adic representation of G and let aG
denote the Artin character of G. By Theorem 4 of Serre-Tate [51] and its
Corollary,

〈aG, φA〉 :=
1

|G|
∑
σ∈G

aG(σ−1)φA(σ),

is a non-negative integer independent of ` and by Corollary 1’ on p. 100 of
Serre [49], fp = 〈aG, φA〉. �

Definition 1.3.16. Let A/k be an abelian variety of CM type. The local
conductor of A at a place p of k is

fA,p := pfp ,

with fp as in Lemma 1.3.15, and the conductor of A over k is

fA :=
∏

p finite

fA,p.

See for example Serre [50] for the definition of fA,p when A does not
have potential good reduction at p.

Proposition 1.3.17 (Serre-Tate [51] Theorem 6(a) and (c)). Let A/k be an
abelian variety of CM type and set G := Gal(kalg/k). Let p be a place of k,
let ` be coprime to Nk/Q(p) and define mp to be the smallest non-negative
integer m such that ρ`(G(m)(p)) = 1. Then A has potential good reduction
at p and

fp = 2g ·mp.

Let
ρ∗` : G/GT (P) → Aut(T`(A)GT (P))

be the natural representation of the quotient group afforded by ρ`. We
define the L-polynomial of A at p to be

Lp(A/F, T ) := det[1− ρ∗`(πp)T ]. (1.18)

where πp is the Frobenius endomorphism.

Definition 1.3.18. With notation as above, the L-series of A/F is

L(A/F, s) :=
∏

p

Lp(A/F,NF/Q(p)−s)−1

=
∏

p

det

[
1− ρ∗`(πp)

NF/Q(p)s

]−1

, (1.19)
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where ` is chosen to ensure ` 6= charF p.

Example 1.3.19. Let E be an elliptic curve over F with good reduction at
p. Then V`(Ẽp) is isomorphic to Q2

` , hence ρ∗`(πp) can be represented by a
matrix Π in M2(Z) since it is independent of the choice of ` 6= p. Then we
have

Lp(E/F, T ) = 1− (tr Π)T + (det Π)T 2

= 1− apT + NF/Q(p)T 2,

where
ap := 1 + NF/Q(p)−#Ẽp(F p).

If E has bad reduction at p then

Lp(E/F, T ) =

 1− T if E has split multiplicative reduction at p,
1 + T if E has non-split multiplicative reduction at p,
1 if E has additive reduction at p.

See Silverman [59] Section II.10 for further details.

In Example 1.3.19 we gave two definitions for the local factors of the
L-series ofE at primes of good reduction, the second of which is purely de-
termined by the cardinality of Ẽp(F p). If C/F is a non-singular projective
curve of genus g then one may similarly define the L-polynomial of C/F
at primes of p where C̃p is non-singular, and if A is the Jacobian of C then
these polynomials will coincide with Lp(A/F, T ) as defined in (1.18).

Now suppose that A/k has complex multiplication by an order O of
a CM field K. Let ` be a rational prime, and define K` := K ⊗ Q` and
O` := O ⊗ Z`.

Lemma 1.3.20 (Serre-Tate [51] p. 503). If ` 6= char k then the map

End(A)⊗Q` → End(V`(A))

is injective.

The action of O on T`(A) makes T`(A) an O`-module and V`(A) a K`-
module. By Lemma 1.3.20, K` acts faithfully on V`(A), so, since they both
have dimension 2g over Q`, V`(A) is a free K`-module of rank 1.

Lemma 1.3.21. Let x be an element ofK`. If xT`(A) is contained in T`(A),
then x is an element of O`.

Proof. Let x be as in the lemma, and let n be a non-negative integer such
that `nx is in O` and y an element of O such that y ≡ `n mod `nO`. Then
`nxT`(A) ⊂ `nT`(A) by our assumption on x, yT`(A) ⊂ `nT`(A). But
then y vanishes on `n-torsion points of A, so there exists y0 in O such that
y = `ny0 and y0 ≡ x mod O`, hence x is an element of O`. �
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Proposition 1.3.22. Considering O`, K` and End(T`(A)) to be subrings of
End(V`(A)),

a) The commutator of O in End(V`(A)) is K`.
b) The commutator of O in End(T`(A)) is O`.
c) The commutator of O in End(A) is O.

The proof follows directly from Lemma 1.3.20 and Lemma 1.3.21.

Corollary 1.3.23. The image of the `-adic representation ρ` is a subgroup
of the group of invertible elements of O`.

Proof. Let σ be an element of Gal(kalg/k). Since ρ`(σ) commutes with
every element of O, by part b) of Proposition 1.3.22, it must be an element
of O`. �



CHAPTER 2

Character Theory

In this chapter we investigate continuous homomorphisms from the idele
group IF of a number field F into the multiplicative group of C which are
trivial on F ∗. We call such homomorphisms Hecke characters of IF .

In the first section, which largely follows the exposition of Heilbronn [23],
we establish some basic definitions and properties and then focus upon the
subset of Hecke characters which correspond, via the Artin mapping, to
characters of Gal(F ab/F ). We call these characters Dirichlet characters of
IF . In Section 2.2 we describe in detail the quadratic Dirichlet characters
of the idele group of an imaginary quadratic field.

A second important class of Hecke characters are defined by abelian
varieties of CM type. Let A/F be an abelian variety of CM type (K,Φ)
with good reduction at p, and let πp be the Frobenius endomorphism of the
special fibre of the local Néron model Ãp. Since πp is in the image of the
natural embedding K ↪→ End0

Fp
(Ãp) we have found a map from the set of

primes of F at which A has good reduction to K. In Section 2.3 we shall
extend this map to a homomorphism χA from IF to K called the Grössen-
character of A. This is an isogeny invariant of A, and we will see that A
is a k-variety (in the sense of Definition 1.2.3), if and only if χA is fixed by
every element of Gal(F/k). The relationship between Dirichlet characters
and Grössencharacters is as follows: if L/F is a quadratic extension asso-
ciated with the Dirichlet character φL and B is the twist of A with respect
to L, then the Grössencharacter χB of B satisfies

χB = φL · χA.

Theorem 2.3.9 describes when a Hecke character of IF occurs as the
Grössencharacter of an abelian variety of given CM type (K,Φ). If k is a
proper subfield of F and there exists a Hecke character χ of Ik such that

χA = χ ◦ NF/k,

then we say that A is of k-type 1. The results of Sections 2.2 and 2.3 will
be applied in Section 4.1 to obtain a full description of the elliptic curves
of K-type 1 defined over the Hilbert class field of an imaginary quadratic
field K.

21



22 2. CHARACTER THEORY

2.1. Hecke Characters

Let F be an algebraic number field and let S0 be the set of infinite places
of F . Let S be the union of S0 and a finite set of primes of F and let IS be
the group of fractional ideals coprime to S.

Definition 2.1.1. Let T be a set of places of F . We define UT be the set of
ideles α of IF such that αp = 1 for all p in T and vp(αp) = 0 for all p not
in T .

If S = S0 then US = UF , the subgroup of IF introduced in Defini-
tion 1.1.11.

Definition 2.1.2. A Hecke character of IF with exceptional set S is a con-
tinuous homomorphism χ : IF → C∗ such that the kernel of χ contains
F ∗US .

If |χ(α)| = 1 for all α in IF , then χ is an ordinary character of IF .

Definition 2.1.3. Let χ be a Hecke character of IF with exceptional set S.
Then the Hecke L-series of χ with respect to S is defined as

LSF (χ, s) :=
∏
p6∈S

(
1− χ(p)

NF/Q(p)s

)−1

. (2.1)

Definition 2.1.4. Let a =
∏

pap be an ideal of IF , and for every prime p
of F let πp be an element of F such that vp(πp) = 1. Let α(a) be the idele
with components given by

α(a)p =

{
1 if p ∈ S0,
π
ap
p otherwise. (2.2)

Given a Hecke character χ of IF with exceptional set S, it is customary,
and frequently convenient for calculations, to regard χ as a homomorphism
IS → C∗ by setting

χ(a) := χ(α(a)) for all a ∈ IS. (2.3)

The definition is independent of the choice of πp in (2.2), since any two
choices determine the same class in IF/US .

Definition 2.1.5. For any idele α, let ιp(α) be the idele with p-component
αp which is 1 everywhere else. Let χp(α) := χ(ιp(α)). We call χp a
local component of χ. We say that χp is a finite or infinite component of χ
according to whether p is a finite or infinite place of F .

Each χp is a Hecke character of IF , and

χ(α) =
∏

p

χp(α).



2.1. HECKE CHARACTERS 23

Proposition 2.1.6. Let χ be a Hecke character of IF . For every prime p of
F , there exists a minimal non-negative integer np such that χp(1+pnp) = 1.
Moreover, np = 0 for almost all p.

Proof. Let N be a neighbourhood of 1 in C∗ which contains no subgroup
of χ(IF ) except {1}. Since χ is continuous, there exists a neighbourhood
N ′ of 1 in IF such that χ(N ′) ⊂ N , and for such a neighbourhood there
exists a finite set T of primes of IF , and integers {tp : p ∈ T} such that

vp(αp − 1) > tp for p ∈ T and vp(αp) = 0 for p 6∈ T

for all α inN ′. ChoosingN ′ to have both T and each tp as small as possible,
we set

np =

{
tp if p ∈ T,
0 otherwise.

�

The smallest possible exceptional set for which χ is defined is Sm :=
S0 ∪ T , with T as in the proof of Proposition 2.1.6. This allows us to make
a canonical choice amongst the Hecke L-series associated with χ and we
define

LF (χ, s) := LSm
F (χ, s). (2.4)

Definition 2.1.7. The conductor of χ is the ideal

fχ =
∏

p finite

pnp ,

where for each prime p the exponent np is the integer defined in Proposi-
tion 2.1.6. We say that χ is ramified at p if p divides fχ.

If χp has finite order for all p in S0 then we say that χ has discrete
infinite components. By the continuity of χp this means that if p is complex
then χp = 1 and if p is real then χp is either the identity character or sgnp

where

sgnp(α) = sgn(αp) for all α ∈ IF . (2.5)

Remark 2.1.8. If χp has finite order then χp is ordinary, but the converse
need not hold. As a counterexample, suppose that p is a complex place of
F and consider the character

χp(α) =
αp

(αpαp)1/2
.
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2.1.1. Dirichlet Characters and Field Extensions. There is an im-
portant subclass of ordinary Hecke characters of IF which correspond to
abelian extensions of L/F by class field theory. We call such characters
Dirichlet characters and describe the correspondence below.

Definition 2.1.9. Let O be an order of F and let m be an ideal of O. The
support of m, denoted supp m, is the set of primes of O dividing m.

Definition 2.1.10. Let m be an integral ideal of F and let x and y be field
elements of F . We say that x is congruent to y modulo m, symbolically that
x ≡ y mod m, if

vp(x− y) ≥ vp(m) for all prime ideals p of F.

Lemma 2.1.11. Let χ be a Hecke character of IF . For any principal ideal
b = (b) such that b is congruent to 1 modulo fχ,

χ(b) =
∏
p∈S0

χp(b
−1).

Proof. The idele β := α(b) has p-component 1 for all p in S and is b
everywhere else. Multiplying by the principal idele b−1 we have

χ(b) =
∏
p∈S

χp(b
−1),

but our choice of b ensures that χp(b) = 1 for all finite p in S. �

We say that an element x of F is totally positive if for every real infinite
place p of F the natural embedding of F into Fp

∼= R maps x to a positive
number.

Definition 2.1.12. A modulus is a formal product of finite and real infinite
places of F : m :=

∏
p pnp where each np is a non-negative integer which is

0 for almost all p and if p is a real infinite place of F then np ≤ 1. If a is an
integral ideal of F we denote by a0 the modulus defined by

a0 := a ·
∏

p∈S+
0

p,

where S+
0 denotes the subset of real infinite places of S0.

Let S = S0 ∪ supp m, define Pm to be the group of principal ideals of
IS and Pm,1 to be the subgroup of Pm generated by principal ideals of the
form b = (b) where b ≡ 1 mod m. We define P+

m,1 to be the subgroup of
Pm,1 with totally positive generators. The ray class group of conductor m0

is the quotient IF/P+
m,1.



2.1. HECKE CHARACTERS 25

Proposition 2.1.13. Let χ be an ordinary character of IF with discrete in-
finite components, and let m be an integral ideal divisible by fχ. Then χ
is a linear character of the ray class group of F with conductor m0. Con-
versely, if η is a linear character of the ray class group of F with conductor
m0, then it arises from a character χ with discrete infinite components and
exceptional set S0 ∪ supp m.

Proof. The first part of the proposition says that if χ is an ordinary character
of IF with discrete infinite components then χ(b) = 1 for all principal
ideals b = (b) of F such that b is totally positive and b ≡ 1 mod m. By
Lemma 2.1.11,

χ(b) =
∏
p∈S0

χp(b
−1).

and since χ has discrete infinite components and (b−1) is totally positive,
the result follows directly.

Let S = S0 ∪ supp m and let η be a character of IS which is 1 on
P+

m,1. We wish to show that there exists an ordinary character χ of IF with
exceptional set S such that for all ideals a in IS ,

χ(α(a)) = η(a), (2.6)

where α(a) is the idele defined in (2.2).
Let ηm be the restriction of η to Pm. We know that ηm((a)) is 1 whenever

a is totally positive, and it follows that there must be a subset T of S0 such
that

ηm =
∏
p∈T

sgnp.

We also denote by ηm the map F ∗ → {±1} sending x to
∏

p∈T sgnp(x).
Let η1 denote the restriction of η to Pm,1 and η′ := η1η

−1
m . Let χp(α) :=

1 for p in S0 \ T and for p in T let

χp(α) := sgnp(α
−1
p ) (2.7)

for αp in F ∗; this has a unique continuous extension to F ∗p . For primes p

outside S, let ap := vp(αp) and define

χp(α) := η(pap), (2.8)

for all α in IF .
For primes p in S \ S0, we first find an element x of F ∗ such that

vp(xαp) = 0 for all p in S \ S0. By the Chinese Remainder Theorem,
there exists an element y of F ∗ such that y ≡ xαp mod m for all p in S \S0,
and we set ∏

p∈S\S0

χp(α) := η′(y). (2.9)
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Equation (2.8) shows that χ satisfies (2.6), and also ensures that kerχ con-
tains US . Combining Equations (2.7), (2.8) and (2.9) we see that |χ(α)| = 1
for all α in IF , and that χ(F ∗) = 1, so it only remains to check that χ is
continuous in the idele topology. Now, by construction kerχ contains the
set of ideles α such that

a) vp(αp) = 0 for all p not in S,
b) vp(αp − 1) ≥ vp(m) for all p in S \ S0, and
c) sgnp(αp) > 0 for all p in S+

0 .
This is an open set in the idele topology, so kerχ is open and χ is continu-
ous. �

Definition 2.1.14. Let m be an ideal of F . An ordinary character χ of
IF with discrete infinite components and exceptional set contained in S0 ∪
supp m is called a Dirichlet character of modulus m.

Let m be an integral ideal and G be a group of Dirichlet characters of
modulus m. Let

M :=
⋂
χ∈G

ker (χ) and N := M/F ∗.

Then N is an open subgroup of CF := IF/F
∗ and hence by the Existence

Theorem of global class field theory, there exists a unique abelian extension
L/F such that NL/F (CL) = N . We call L/F the extension associated with
G.

Given a finite abelian extension L/F we define the group of Dirichlet
characters of IF corresponding toL/F to be those which correspond via the
Artin mapping to characters of Gal(L/F ). In particular, if L/F is quadratic
then we shall say that χ is the Dirichlet character corresponding to L/F if
χ generates the group of Dirichlet characters of IF corresponding to L/F .

Definition 2.1.15. Let L/F be a finite abelian extension associated with a
group of Dirichlet characters G of modulus m. The conductor of L/F is the
ideal fL :=

∏
p|m pap where for each p in supp m,

ap := max{vp(fχ) : χ ∈ G}.

Let k be an algebraic number field contained in F . Then if χk is a
character of Ik with exceptional set Sk, composition with the norm mapping
defines a character χ := χk ◦ NF/k of IF with exceptional set S containing
every prime of F which divides an element of Sk. Note that even if Sk is a
minimal exceptional set for χk, if F/k is ramified at some prime in Sk then
S need not be a minimal exceptional set for χ.

Lemma 2.1.16. Let F/k be an abelian extension and suppose that χk is
a Dirichlet character of Ik; set χ := χk ◦ NF/k and let M and L be the
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corresponding extensions of k and F respectively. Then L = FM and L/k
is an abelian extension.

Proof. This is a simple application of the properties of the Artin map for
towers of number fields, see for example p. 172 of Tate [61]. �

Definition 2.1.17. Let k be a number field. The Dedekind zeta-function of
k is defined as

ζk(s) :=
∏

p

(
1− 1

Nk/Q(p)s

)−1

= Lk(1, s),

where Lk(1, s) is as in (2.4) with χ = 1.

Theorem 2.1.18 (Heilbronn [23] Theorem 6). Let F/k be a finite abelian
extension. Let G be the group of Dirichlet characters associated with F/k.
Then

ζF (s) =
∏
χ∈G

Lk(χ, s).

We shall revisit Hecke L-series in Section 4.2.

2.1.2. Local Components and Field Extensions. For a place p of an
algebraic number field F , let Up be the unit group of the maximal order of
Fp if p is finite and the multiplicative group of Fp otherwise. We say that an
element x of F is a local unit (at p) if x belongs to Up and that x is a global
unit if x is a local unit for all places p of F .

Let
UF :=

∏
p∈F

Up = UF
∏
p∈S0

Up = UFF
∗
∞.

We define a character χ of UF to be a product

χ :=
∏

p

χp,

where each χp is a homomorphism from Up to the unit circle of C and
χp = 1 for almost all places p of F .

Definition 2.1.19. Let χ be an ordinary Hecke character of IF and let

χ′p = χp|Up .

We call χ′p a restricted local component of χ.
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Let χ be a Dirichlet character of modulus m and order `n for some prime
`. Let c1, . . . , cm be a set of elements of IF which generate the `-class
group of F and set C := 〈c1, . . . , cm〉. We define χ1 to be the restriction
of χ to C. Let h be the homomorphism from C × UF to IF/F

∗ defined by
multiplication of ideles.

Lemma 2.1.20 (Halter-Koch [20] pp. 2–3). With notation as in the pre-
ceding paragraph, χ is uniquely determined by χ1 and the restricted local
components χ′p. Conversely suppose that φ is a character of UF of order `m

with discrete infinite components and that φ1 is a character of C of order
`m. Then there exists a unique Dirichlet character χ of IF of order `m such
that χ|C = φ1 and χ|UF

= φ if

φ1(α)φ(β) = 1

whenever (α, β) is an element of kerh.

As a special case we note the following:

Lemma 2.1.21. Let φ be a character of UF of order `n, and let H be the
Hilbert class field of F . If φ is 1 on the group of global units of F then
φ ◦ NH/F extends to a Dirichlet character of IH of order `n.

We now collect some results on the structure of the unit group of a
local field of finite characteristic. Further details and proofs may be found
in Chapters IV and V of Serre [49]. Let kw be a local field with finite
residue field kw of characteristic p > 0 and unit group Uw. Recall from
Section 1.3.1 the definition of the ramification groups U (i)

w .

Proposition 2.1.22. Let Fv/kw be a cyclic extension of degree n.

a) The quotient Uv/U
(1)
v is isomorphic to F

∗
v,

b) The unit group of kw contains NFv/kw(Uv),
c) If Fv/kw is unramified, then NFv/kw(Uv) = Uw and NFv/kw(F

∗
v) =

k
∗
w,

d) If Fv/kw is totally ramified then F v = kw and

Uw/NFv/kw(Uv) ∼= Cn.

Let ` be a rational prime and let Fv/kw be a cyclic extension of de-
gree ` which is totally ramified. Let σ be a generator of Gal(Fv/kw), let
x be an element of Fv such that v(x) = 1 and set iv := v(σ(x) − x). By
Definition 1.3.1, iv is the smallest integer i such that Gi := Gi(Fv/kw) = 1.

Proposition 2.1.23. In the situation above, iv ≥ 1, with equality if and only
if ` 6= p.
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Lemma 2.1.24. Let Fv be a totally ramified quadratic extension of kw and
let ϕ be the function with the property that Gi = Gϕ(i) as defined in (1.12).
Then ϕ(iv) = iv.

Proof. This is a simple application of Lemma 3 of Serre [49] IV.3. �

By Proposition 1.3.3, it follows that iv is the exponent of the conductor
of Fv/kw.

Corollary 2.1.25. If iv = 1, then the character associated with Fv/kw is a
character of k

∗
w composed with the residue class field mapping x 7→ x̄.

For example, suppose that kw = Qp for some rational prime p and let
Fv be a quadratic extension of Qp. If p is odd then by Corollary 2.1.25 the
character associated with Fv/Qp corresponds to a quadratic character of F∗p.

If p = 2 then we must have iw > 1. The following lemma shows that
we have iw ≤ 3.

Lemma 2.1.26 (Serre [49] Lemma XIV.3). If an element m of Z2 is con-
gruent to 1 mod 8 then m is a square.

Example 2.1.27. Let kw = Qp as above. If p is odd then there is a unique
non-trivial quadratic character ηp : Uw → ±1 given by

ηp(x) :=

(
x

p

)
=

(
p∗

x

)
,

where
(
·
p

)
is the quadratic residue symbol on k

∗
w = F∗p.

If p = 2 then by Lemma 2.1.26, Q∗2/Q∗2
2 = 〈−1, 2, 5〉 and Uw/U2

w =
〈−1, 5〉. The non-trivial quadratic characters of Uw are ηs :=

(
s
x

)
for s in

{−8,−4, 8}. These characters satisfy the condition that ηn(x) = 1 if and
only if x is a norm in the extension Q2(

√
n)/Q2 and are given explicitly by

the equations:
η−4(x) := (−1)(x−1)/2,

η8(x) := (−1)(x2−1)/8,

η−8(x) := (−1)(x2−1)/8+(x−1)/2.

2.2. Quadratic Characters of Quadratic Fields

Imaginary quadratic fields K/Q play a special role in this work as the
CM fields of elliptic curves. In this section we investigate the quadratic
Hecke characters of IK in terms of their restricted local components to
establish results which will be used repeatedly in each of the subsequent
chapters. As a preliminary we look in Section 2.2.1 at the Hecke charac-
ters of Q associated with quadratic extensions K/Q, which should give an
insight into the relationship between the Dirichlet characters of modulus m



30 2. CHARACTER THEORY

of a number field IF and the classical notion of a Dirichlet character of
modulus m as a character of (Z/mZ)∗. In Section 2.2.2 we recall classical
results of genus theory on the quadratic characters of the class group Cl(O)
of ordersO ofK and in Section 2.2.3 we describe the characters of the local
unit groups Up.

Throughout this section, K denotes a quadratic extension of Q.

2.2.1. Quadratic Fields. Let K/Q be a quadratic field. The discrimi-
nant DK of K is the discriminant of the maximal order OK of K.

Definition 2.2.1. An integer s is a prime discriminant if s is divisible by
precisely one rational prime, and s is the discriminant of Q(

√
s).

Proposition 2.2.2. Let K/Q be a quadratic field with discriminant DK di-
visible by t distinct primes s1, . . . , st. Then there is a unique decomposition
of DK into a product of prime discriminants

DK = s∗1 · · · s∗t ,
where for odd primes

s∗i :=

{
−si if si ≡ 3 mod 4,
si if si ≡ 1 mod 4,

and the prime discriminant 2∗ is the unique element s of {−8,−4, 8} such
that DK/s ≡ 1 mod 4. The restriction of the Dirichlet character η associ-
ated with K/Q to UQ is given by

η = η∞ ·
t∏
i=1

ηs∗i (2.10)

where η∞ = 1 if DK > 0 and sgn∞ otherwise, and we define η−p := ηp for
odd primes p.

Proof. The unique factorization of DK into a product of prime discrimi-
nants is a simple proof by induction. Since Q has class number 1, η is
determined by its restricted local components, which for finite places of Q
are as determined in Example 2.1.27. Finally, since η is an idele class char-
acter it must be 1 on Q∗, and in particular, must be even. This determines
the infinite component of η as claimed. �

2.2.2. The Genus Field. Let K be an imaginary quadratic field and
let O be an order of K of discriminant D. Let t := tD be the number
of rational primes dividing D. In this section we shall determine which
quadratic extensions of K are contained in the ring class field of O. For
more details see Cox [6] or Hecke [22].
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Definition 2.2.3. Let a and b be integral ideals of O, coprime to D. We say
that a and b belong to the same genus if

|NK/Q(a)| = NK/Q(x) · |NK/Q(b)| mod D

for some x in K.

Let GD denote the set of genera of O. We can make GD into a group
by defining the product of elements g1, g2 of GD to be the genus of the
ideal a1 · a2 where a1 belongs to g1 and a2 to g2. The genus containing the
principal ideals of O is called the principal genus: it is the identity element
of GD.

Definition 2.2.4. Let a be an integer coprime to D. We say that a genus g
represents a if a = NK/Q(a) for some ideal a in g.

If ideals a, b belong to the same class of IO, then they belong to the
same genus, hence the group of genera is a quotient group of the ideal class
group of O. By Artin reciprocity then, it defines a subfield Fg of the ring
class field of O. We call Fg the genus field of O.

Remark 2.2.5. In a more general context, the genus field of a number field
F is defined to be the maximal subfield k of F such that k/Q is abelian.
With this convention the field Fg defined above is the genus field of HO.

Definition 2.2.6. Let D and O be as above and let S be the set of odd
primes dividing D. If D is divisible by 4, set d := −D/4. We define

XD :=


{ηp : p ∈ S} D odd, or d ≡ 3, 7 mod 8,
{ηp : p ∈ S ∪ {−4}} d ≡ 1, 4, 5 mod 8,
{ηp : p ∈ S ∪ {8}} d ≡ 2 mod 8,
{ηp : p ∈ S ∪ {−8}} d ≡ 6 mod 8,
{ηp : p ∈ S ∪ {−4, 8}} d ≡ 0 mod 8,

and set µ := |XD|.

Lemma 2.2.7 (Cox [6] Lemma 3.17). An element a of (Z/DZ)∗ belongs to
the kernel of η for all η inXD if and only if it is represented by the principal
genus.

Lemma 2.2.8 (Cox [6] Theorem 2.16). Let χD :=
∏

η∈XD
η. Then a is

represented by a genus of GD if and only if χD(a) = 1.

Corollary 2.2.9. The group of genera ofO is isomorphic toC×µ−1
2 , with µ as

in Definition 2.2.6. Moreover the group of characters associated with Fg/Q
is generated by the set YD of even quadratic characters whose non-trivial
finite components are in XD.
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Therefore if L is a quadratic extension of K contained in Fg, the char-
acter of IK associated with L/K is of the form

φL = φ ◦ NK/Q,

for some φ in YD.

2.2.3. Quadratic Characters of Local Unit Groups. Let K be a qua-
dratic field with discriminant DK , let p be a rational prime and p a prime of
K dividing p, and set s := 2∗ if p = 2 and s := p otherwise. Let κs be the
character of Up defined by

κs := ηs ◦NK/Q. (2.11)

If p is odd let λp be defined by

λp(x) :=

(
x

p

)
, (2.12)

where x̄ denotes the image of x in the residue field Kp.

Corollary 2.2.10. Let p be an odd prime and let p be a prime ofOK dividing
p. There is a unique non-trivial real quadratic character on Up which is
equal to λp if p divides DK and to κp otherwise.

This is an immediate consequence of Lemma 2.1.22. If p is inert in
OK then κp = λp is the only non-trivial quadratic character on Up. If p
splits, then it lies under two conjugate primes, p and pρ, the local unit group
Up

∼= Z∗p has exactly one (non-trivial) quadratic character λp, and by c)

λpλ
ρ
p = κp. (2.13)

If p divides DK then we set λp := λp.
When p = 2, the situation is a little more complicated, because there

exist local characters with conductor exponent greater than one. In this case
Proposition 2.1.22 tells us that

Corollary 2.2.11. Let p be a prime of OK dividing 2. There exists some s
in {−8,−4, 8} such that κs(Up) = 1 if and only if 2 divides DK .

Lemma 2.2.12. Suppose that 2 splits in K, and let p be a prime of K
dividing 2. Then Up is isomorphic to Z∗2, and the non-trivial quadratic
characters of Up, denoted by λ−8, λ−4, λ8, satisfy

λaλ
ρ
a = κa

for a in {−8,−4, 8}.

This follows in precisely the same way as the case p odd.
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Lemma 2.2.13. Suppose that 2 does not split in K, and let p be the prime
of K dividing 2. Then

U := Up/U
2
p
∼= (Z/2Z)3. (2.14)

Proof. By Proposition II.6 of Lang [25],

|Up/U
2
p | = 2[Kp:Q2]+1 = 23.

�

Lemma 2.2.14. Suppose that 2 is inert in K. Then the character group of
Up is generated by {κ8, ν, ν

ρ} where

ννρ = κ−4.

Proof. Since 2 is inert in K, there exists x in K with x̄2 + x̄ + 1 = 0, and
U is generated by {−1, 1 + 2x, 1 + 4x}. Let ν be the character of U with
kernel generated by {1 + 2x, 1 + 4x}. Then as xρ = x2, the kernel of νρ is
generated by {1 + 2x2, 1 + 4x2} and ννρ = κ−4. �

Let s(K) := 2∗ where 2∗ is as defined in Proposition 2.2.2.

Lemma 2.2.15. If 2 ramifies in K then the group of quadratic characters
of Up is generated by {ν, νρ, λs} where s := s(K),

ννρ =

{
κ8 if DK/4 ≡ 3 mod 4,
κ−4 if DK/4 ≡ 2 mod 4,

and λs is a real character which is odd if s = −8 and even otherwise.

Proof. Let U be as in (2.14) and let m ∈ K be the square root of DK/4.
We have two cases to consider:

a) DK/4 is odd.
Consider the set S of elements of Up of the form x = a + bm,

with a, b in Z/8Z such that a, b are not both even. Squares in S are
of the form c+2dm, with c, d odd. (In this context we consider 0 to
be an even number.) Therefore |S/S2| = 8 = |U |, hence

U = 〈m, 3− 2m, 5〉.
Let ν, λ−4 be the characters of U with kernels 〈m, 3 − 2m〉 and
〈3− 2m, 5〉 respectively.

Then λρ−4 = λ−4, ννρ = κ8 and ν, νρ, λ−4 generate the character
group of U .

b) DK/4 is even.
In this case S consists of elements x = a+ bm as above, where

a must always be odd, and x is a square if b is even. Hence

U = 〈1 +m,−1, 5〉,
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and the character group of U is generated by µ8 and µ−8, the char-
acters with kernels 〈1 + m,−1〉, 〈1 + m, 5〉 respectively, and their
conjugates.

If DK/8 ≡ 3 mod 4, then λ−8 := µ−8 = µρ−8 and µ8µ
ρ
8 = κ−4.

If DK/8 ≡ 1 mod 4, then λ8 := µ8 = µρ8 and µ−8µ
ρ
−8 = κ−4.

�

Corollary 2.2.16. Suppose that 2 ramifies in K/Q and let p be the prime of
OK dividing 2. Then the conductors of the real quadratic characters of Up

are given by
DK mod 8 fκ fλ

4 p4 p2

0 p2 p5

where λ := λs(K) and κ := κm where m = 8 if s(K) = −4 and m = −4
otherwise.

We summarize the properties of the characters λp for p dividing DK

below:

Proposition 2.2.17. Let p be an odd prime dividing DK . Then λp is a real
quadratic character which is odd if and only if p ≡ 3 mod 4. Suppose that
DK is even and let s := s(K). Then λs is a real quadratic character which
is odd if s = −8 and even otherwise.

In order to treat characters λs in a unified way, we set λp∗ := λp for any
prime p dividing DK . We define

GK := 〈λp∗ : p|DK〉. (2.15)

Let G+
K and G−K be respectively the subsets of even and odd characters in

GK .

Corollary 2.2.18. Suppose that DK is a negative discriminant divisible by
t distinct primes, p1, . . . , pt. Then |G+

K | is 2t−1 if DK is divisible either by
8 or by some prime p ≡ 3 mod 4 and 2t otherwise.

Proof. If DK is divisible neither by 8 nor by any prime p ≡ 3 mod 4 then
λp∗ is even for every p dividing DK , and clearly these characters generate
a group of order 2t. Otherwise, suppose that λp∗i is odd for 1 ≤ i ≤ u and
even for u + 1 ≤ i ≤ t. The characters λ1λi with 2 ≤ i ≤ u generate a
group G1 of order 2u−1 and

G+
K := 〈G1, λj : j > u〉,

hence G+
K has order 2t−1 as claimed. �

It follows that G−K is either empty or of order 2t−1.
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2.3. Grössencharacters

Let (K,Φ) be a CM type with reflex (K ′,Φ′) as in Definition 1.2.13
and let F be a finite extension of K ′. We will retain this notation for the
remainder of this chapter.

Definition 2.3.1. Let fΦ := det Φ′ ◦NF/K′ , and denote by the same symbol
its continuous extension to a homomorphism IF → IK . For any place p of
F , let fΦ,p : IF → Kp be the map defined by

fΦ,p(α) = βp, where β = fΦ(α).

It follows from the definition of fΦ that

fΦ(α)fΦ(α)ρ = NF/Q(α). (2.16)

where ρ denotes complex conjugation on K.
Suppose that (A, θ) is an abelian variety of CM type (K,Φ) defined

over F , with good reduction at the place p of F . Let Ãp be the special
fibre of the Néron model of A at p, let k = F p, and let πp be the Frobenius
endomorphism of Ãp over k.

By the universal property of the Néron model (or by Lemma 1.1.16 if
g = 1), the reduction of θ at p defines an injection

θp : K ↪→ End0
k(Ãp).

Now πp commutes with every k-endomorphism of Ãp, so, by Proposi-
tion 1.3.22, (or by Proposition 1.1.22 for g = 1), it is in the image of θp

and since θp is injective, there exists a unique element xp of K satisfying

πp = θp(xp). (2.17)

Let S be the set of places of F which are infinite or at which A has bad
reduction. Let IF,S be the ideles of F which have p-component 1 for all p
in S. Then (A, θ) defines a map φA from IF,S to K∗ by

φA(α) :=
∏
p/∈S

x
np
p (2.18)

where np = vp(αp).

Theorem 2.3.2 (Serre-Tate [51] Theorem 10). There is a unique continuous
homomorphism φA : IF → K∗ which extends the map of (2.18) on IF,S
and agrees with fΦ on F ∗.

Remark 2.3.3. If A is an elliptic curve, then K ′ = K and for all x in F ,

fΦ(x) = NF/K(x).
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Let p be any infinite place of K. Then since K is a CM field, Kp is
isomorphic to C. We define

χA,p := φA · f−1
φ,p . (2.19)

Fixing a choice of infinite place p, we let f∞ := fφ,p.

Definition 2.3.4. The Grössencharacter of A is the Hecke character of IF
defined by

χA := φAf
−1
∞ .

We note that the infinite components of χA are determined by the CM
type of A.

Lemma 2.3.5. Let A and B be abelian varieties of CM type (K,Φ) and let
χ := χAχ

−1
B . Then χ is a Dirichlet character.

Proof. Since the infinite components of χA and χB are equal, χ is a Hecke
character with discrete infinite components and exceptional set contained in
the union T of the exceptional sets of χA and χB. It remains to show that
χ(α) lies on the unit circle of C∗ for all ideles α of F . But this is clear for
any idele α in IF,T since

χA(α) =
∏
p/∈T

x
np
p , χB(α) =

∏
p/∈T

y
np
p ,

and xp/yp is a unit for each p. The general result follows by the continuity
of χA and χB. �

Proposition 2.3.6. If (A, θ) and (A′, θ′) are abelian varieties of CM type
(K,Φ) defined over F then χA = χA′ if and only if A and A′ are isogenous
over F . Moreover, the minimal extension L/F over whichA andA′ become
isogenous is the one associated with the Hecke character φL = χA′χ

−1
A .

Proof. See Lemma 19.12 of Shimura [54], or for the case of elliptic curves
Gross [16] pp. 25–26. �

Proposition 2.3.7. With other notation as above, suppose that F/Q is nor-
mal and let σ be an element of Gal(F/Q). The variety (Aσ, θ′) is of CM
type (K,Φ′) where θ′(x) = θ(x)σ and Φ′(x) = Φ(x)σ for x in K and

χAσ = (χA)σ.

Proof. See Shimura [54] Lemma 20.6. �

Corollary 2.3.8. Let A and F be as in Proposition 2.3.6 and suppose that
k is a normal subfield of F . Then A is a k-variety (in the sense of Defini-
tion 1.2.3), if and only if χAσ = (χA)σ for all σ in Gal(F/k).
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Proof. In Definition 1.2.3 we definedA to be a k-variety if it is F -isogenous
to Aσ for all σ in Gal(F/k). Clearly this property is isogeny invariant,
hence by Proposition 2.3.6, A is a k-variety if and only if χA = χAσ for all
σ in Gal(F/k) and Proposition 2.3.7 shows that this is true if and only if

(χA)σ = χA for all σ ∈ Gal(F/k).

�

Earlier in this chapter we saw that any ordinary Hecke character of IF
with discrete infinite components corresponds to an abelian extension L/F .
The next theorem gives conditions for a Hecke character of IF to be the
Grössencharacter of an abelian variety of a given CM type.

Theorem 2.3.9 (Shimura [55] Theorem 6). Let (K,Φ) be a CM type with
reflex (K ′,Φ′) and let F be a finite extension of K ′. Let ψ be a Hecke
character of IF with values in K∗ and with trivial infinite components,
satisfying

ψ(α)ψ(α)ρ = NF/Q(α). (2.20)
Then if there exists a lattice Λ in K such that

ψ(α)fΦ(α)Λ = Λ, (2.21)

for all α in IF , then there exists an abelian variety A defined over F such
that there is an exact sequence

0 → Λ → Cg → A→ 0,

and χA = ψ · f−1
∞ .

Example 2.3.10. Let K/Q be an imaginary quadratic field with discrimi-
nant DK divisible by some prime p congruent to 3 modulo 4, and let H be
the Hilbert class field of K. Then λp extends to an ordinary Hecke char-
acter ψ of IK such that ψ∞(α) = α−1

∞ and if a = (a) is a principal ideal
coprime to DK then ψ(α(a)) = λp(a) · a and

χ := ψ ◦ NH/K

is a Hecke character of IH satisfying the conditions of Theorem 2.3.9 for
any lattice of K.

The above example introduces a class of Grössencharacters in which we
will be especially interested. If A is defined over k with Grössencharacter φ
and F is any extension of k, then the Grössencharacter of A over F is given
by

χA = φ ◦ NF/k, (2.22)
however as we saw in Example 2.3.10 it is not necessary forA to be defined
over k for an equation of the form (2.22) to exist.
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Definition 2.3.11 (Shimura’s Condition). Let A,F,K and χA be as in The-
orem 2.3.9 and let k be a subfield of F containing K ′ such that A is a k-
variety. Then we say that A is of k-type 1 if there exists a Hecke character
χk of Ik such that

χA = χk ◦ NF/k,

and of k-type 2 otherwise.

If k = K ′ then we may say that A is type 1 (resp. 2) instead of k-type 1
(resp. 2).

Theorem 2.3.12 (Shimura [56] Theorem 7.44). If A, F and k are as above
then A is of k-type 1 if and only if F (Ators) is an abelian extension of k.

Corollary 2.3.13. Suppose that A/F and A′/F are as in Proposition 2.3.6,
that they are non-isogenous over F and that A is of k-type 1, where k is
a subfield of F containing K ′ such that Gal(F/k) is abelian. Let L be
the minimal extension of F contained in F alg over which A and A′ become
isogenous. Then L/k is abelian if and only if if A′ is of k-type 1.

Proof. The extensionL/F corresponds to the Hecke character φL = χA′χ
−1
A

and if A and A′ are k-type 1 then there exist Hecke characters χ and χ′ of
Ik such that χA = χ ◦NF/k and χA′ = χ′ ◦NF/k, hence φL = χ′χ−1 ◦NF/k

and L/k is abelian by Lemma 2.1.16.
Conversely, suppose that L/k is abelian. Then by Theorem 2.3.12,

L(Ators) = L(A′tors) is an abelian extension of k, and since F (A′tors) ⊆
L(Ators), we see that A′ is of k-type 1. �

Corollary 2.3.14. With notation as above, let L be a quadratic extension of
F . Then L/k is abelian if and only if

φL = φ0 ◦ NF/k

for some character φ0 of Ik.

2.3.1. Grössencharacters and `-adic Representations. Let A be an
abelian variety of CM type (K,Φ) defined over a number field F . We con-
tinue to assume that F is a finite extension of the reflex field K ′ of K. In
Section 1.3.3 we defined the `-adic representation

ρ` : Gal(F alg/F ) → Aut(T`(A)).

for any rational prime `. By class field theory, we can consider ρ` as a
homomorphism from IF to K∗` with kernel containing F ∗.

Definition 2.3.15. For any rational prime `, let

f`(α) := fΦ,q(α),

where q is a prime of OK dividing ` and fΦ,q is as in Definition 2.3.1.
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Proposition 2.3.16. For any rational prime `,

ρ` = φAf
−1
` ,

where φA is the homomorphism from IF to K∗ of Theorem 2.3.2.

Proof. By definition, φA = f` on F ∗. Let p be a prime at which A has
good reduction and let p be the characteristic of Fp. If p 6= ` then Proposi-
tion 1.3.14 tells us that ρ`(Up) = 1, and if vp(αp) = 1 then ρ`,p(α) = xp,
where xp is as defined in (2.17). Let S` = S ∪ {p : p|`} where S is the
union of S0 and the set of primes of F at which A has bad reduction. We
have established the claim on F ∗IF,S`

, which is a dense subgroup of IF ,
hence the result holds for all of IF since both sides of the equation are
continuous. �

Comparing the action of ρ` and φA on Up, we see that A has bad reduc-
tion at p if and only if p divides the conductor of χA.

Corollary 2.3.17 (Serre-Tate [51] Theorem 12). Let A/F be an abelian
variety of CM type (K,Φ) with Grössencharacter χ := χA and suppose
that F contains the reflex field K ′. The conductor fA of A is related to the
conductor fχ of χ by

fA = f2gχ .

Proof. Let p be a prime at which χA is ramified. By Definition 2.1.7, the
exponent of fA at p is 2g ·mp, where mp is the smallest integer i such that
Gi(F alg

P /Fp)) ⊂ ker ρ`. By Proposition 1.3.3, Proposition 2.3.16 and the
definition of χA, we see that mp is the smallest non-negative integer such
that χA,p(1 + pi) = 1, and the result follows by Definition 2.1.7. �

Theorem 2.3.18 (Shimura [56] Theorem 7.42). Let A/F be an abelian
variety of CM type (K,Φ). The L-series of A, defined in Definition 1.3.18,
is equal to

L(A/F, s) =
∏
p∈S0

LF (χA,p, s) · LF (χA,p, s),

where χA,p is as defined in (2.19).

If A is an elliptic curve with CM then comparing (2.1) and (1.19) shows
that the claim of the theorem is that if A has good reduction at p then

χA(p) + χA(p) = ap, and χA(p) · χA(p) = NF/Q(p).

The second equality follows directly from the definition of the Grössen-
character, (c.f. Theorem 2.3.9). Silverman [59] gives a proof of both on
pp. 174–175.



CHAPTER 3

Counting Admissible Extensions

Suppose that A is an abelian variety of CM type (K,Φ) with reflex field
k and let F be a field of definition for A containing k. Suppose further that
A is of k-type 1, and that A is F -isogenous to Aσ for all σ in Gal(F/k0) for
some subfield k0 of k, that is, A is a k0-variety.

Let L/F be a quadratic extension and let B be the twist of A by L. We
saw in Chapter 2 that

a) B is of k-type 1 if and only if L/k is abelian,
b) B is a k0-variety if and only if L/k0 is normal, and
c) the set of primes of F at which B has bad reduction is contained

in the union of the set of primes at which A has bad reduction and
those at which L/F is ramified.

When calculating the endomorphism algebras of Weil restrictions in Chap-
ter 5, we shall want more detailed information about Gal(L/k). For exam-
ple, suppose that A is simple and of k-type 1, that L/k is normal and let
WA and WB be the Weil restrictions of A and B from F to k. We shall see
in Proposition 5.2.18 that End0

k(WA) and End0
k(WB) are isomorphic if and

only if Gal(L/k) ∼= C2 ×Gal(F/k).
These considerations motivate the subject matter of this chapter, in which

we investigate extensions L/k which occur in towers

L/F/k

with the properties that F/k is abelian, L/F is quadratic and L/k is normal.
We shall call such extensions admissible and denote the set of admissible
extensions contained in a fixed algebraic closure of k by GF/k. The subset
of admissible extensions which are abelian over k is denoted AF/k. If L, F
and k are all normal over Q, then we say that L is strictly admissible. Mul-
tiplication of Dirichlet characters gives a natural group structure to the set
of quadratic extensions of F , and we shall see in Section 3.1 that the subset
GsF/k of strictly admissible extensions is a subgroup of GF/k. In Section 3.2
we recall, following Massy [27] and Fröhlich [11], some of the cohomolog-
ical theory of central extensions of an abelian group by ±1. We obtain an
upper bound for the dimension dF/k of GF/k/AF/k as an F2-vector space,
and under the additional assumption that Gal(F/k) ∼= C×n2 , investigate the

40
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Galois groups which may occur as Gal(L/k) when L is an admissible ex-
tension. Retaining this assumption, the last part of this section looks in more
detail at the relationship between the Galois groups Gal(L/k),Gal(L′/k)
and Gal(L ◦ L′/k) where ◦ denotes the composition relation on GF/k.

In the final section we apply the preceding theory to the case where k
is an imaginary quadratic field and F is the Hilbert class field of k. Naka-
mura [34] has proved that in this case dF/k =

(
n
2

)
where n is the 2-rank of

the class group of k, which is the upper bound found in the preceding sec-
tion. The groups occurring as Gal(L/k) for L in GF/k are therefore largely
determined by those of L in AF/k, to which our attention turns.

3.1. Admissible Extensions

In this chapter we fix an algebraic closure Qalg of Q and consider any
algebraic number field F as a subfield of Qalg.

Definition 3.1.1. An algebra over a field F is called étale if it is isomorphic
to a product of finite separable field extensions of F , each contained in Qalg.

Definition 3.1.2. Let F be an algebraic number field. We define GF to be
the set of étale F -algebras of dimension 2.

Suppose that L ∼= F × F . We shall define the discriminant DL/F of
L/F to be the trivial ideal of OF , and the character φL of the F -algebra
L/F to be the character sending every element of IF to 1. If L/F is a
quadratic extension of number fields then φL is the Dirichlet character of
IF corresponding to the extension L/F as in Chapter 2, and DL/F is the
relative discriminant in the usual sense.

Definition 3.1.3. Let L and L′ be elements of GF associated with Dirichlet
characters φ and φ′ of IF . We define L′′ = L ◦ L′ to be the element of GF
with character φ′′ = φ · φ′.

With notation as in the definition, if φ is equal to neither φ′ nor 1, then
the composite field L′L is an extension of F with Galois group isomorphic
to C2 × C2 and corresponding to the group of Dirichlet characters 〈φ, φ′〉.
The field L′′ is the unique quadratic extension of F contained in L′L which
is equal to neither L nor L′. It follows that if a and b are elements of F such
that L = F (

√
a) and L′ = F (

√
b) and L′′ = L ◦ L′ then L′′ = F (

√
ab).

Let G be a finite group and p a rational prime and let Gp be the maximal
abelian quotient group of G with order a power of p. The p-rank of G is
the number of non-trivial cyclic factors of Gp. We extend this definition to
positive powers of primes by defining the pj-rank of G to be the p-rank of
Gpj−1 := {σpj−1

: σ ∈ Gp}. When G is abelian, this corresponds to the
number of factors of order divisible by pj which occur in a decomposition
of G into a direct product of cyclic groups.
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Definition 3.1.4. Let F/k be a normal extension of number fields, let p be a
rational prime and let m = pj for some integer j ≥ 1. We define rm(F/k)
to be the m-rank of Gal(F/k).

Lemma 3.1.5. Let M be a normal extension of F and let

GF,M = {L ∈ GF : L ⊂M} ∪ {F × F}.
Then GF,M is a subgroup of GF . In particular, if M is a finite extension of
F , let A be the largest subextension of M which is abelian over F and set
m := r2(A/F ). Then GF,M is isomorphic to C×m2 .

Proof. Without loss of generality, we may assume that M/F is abelian,
hence the characters of Gal(M/F ) form a group isomorphic to Gal(M/F ),
and the result is a consequence of the properties of profinite groups. �

For any normal subfield k of F , let

GF/k := {L ∈ GF : L/k is normal} ∪ {F × F},
AF/k := {L ∈ GF/k : L/k is abelian} ∪ {F × F}.

Applying Lemma 3.1.5 with M a normal closure of k shows that GF/k is a
group, and it follows that AF/k is too. Let

CF/k := {L ∈ GF/k : Gal(L/k) ∼= C2 ×Gal(F/k)} ∪ {F × F}. (3.1)

It is also a corollary of Lemma 3.1.5 that CF/k is a subgroup of GF/k.
We say that L and L′ are k-equivalent if L′ = L◦L′′ for some extension

L′′ in CF/k, that is if they lie in the same CF/k-coset of GF/k. This defines an
equivalence relation on GF/k.

Definition 3.1.6. Suppose that F and k are normal over Q and Gal(F/k)
is abelian. Let GsF/k be the subgroup of GF/k containing extensions of F/k
which are normal over Q. If L belongs to GsF/k then we say that L is a
strictly admissible extension of F .

Let

As
F/k := AF/k ∩ GsF/k and (3.2)
CsF/k := CF/k ∩ GsF/k. (3.3)

Remark 3.1.7. There is a natural isomorphism GF/Q ∼= GsF/k, which defines
an injection AF/Q ↪→ As

F/k.

The group CsF/k is clearly a subgroup of As
F/k and we define

c4(F/k) := log2 |As
F/k/CsF/k|. (3.4)
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In Proposition 3.3.5 we shall see that if F/Q is abelian then every Q-
equivalence class of GF/Q has a representative which is unramified outside
primes ramifying in F/Q.

Since C2a
∼= C2 × Ca for any odd integer a, we see that c4(F/k) ≤

r2(F/k). Suppose that σ is an element of Gal(F/k) of order 2. Kummer
theory yields a well-known criterion for deciding whether there exists an
extension L/F in GF cyclic over F 〈σ〉:

Theorem 3.1.8 (Albert’s Theorem). There exists a quadratic extensionL/F
such that L/F 〈σ〉 is cyclic, if and only if −1 ∈ NF/F 〈σ〉(F ).

Proof. See Gras [15] p. 58. �

We shall say that F/k satisfies Albert’s condition if the condition of the
theorem is satisfied for all elements σ of Gal(F/k) of order 2. This is a
necessary but not a sufficient condition for c4(F/k) to be maximal. For
example, if k0 = Q, k = Q(

√
d) and F is the Hilbert class field of k

then for d = −84 and −651, the extension F/k satisfies Albert’s condition,
but c4(F/k) = 1, as in both cases there exists an element σ of Gal(F/k)
such that for all L in GF/F 〈σ〉 if L/Q is normal then Gal(L/F 〈σ〉) is non-
cyclic. There may also exist L in GF/k satisfying the condition, but no L in
AF/k. For example, let k = Q and F = Q(

√
−3,

√
−7). Then there exist

quadratic extensions L/F which are cyclic over Q(
√
−7) and normal over

Q, but none which are abelian over Q.

3.2. The Cohomology of Quadratic Extensions

This section develops theory which will be applied in Section 3.3 and
the next two chapters. We proceed in three stages. In Section 3.2.1 we
recall some standard results from the cohomology of group extensions. In
Section 3.2.2 we apply the theory of polycyclic groups to determine the
possible group structure of Gal(L/k) where L ∈ GF/k and Gal(F/k) ∼=
C×n2 , while in Section 3.2.3 we investigate the frequency with which these
groups occur in GF/k by analysing the group structure of Gal(L ◦ L′/k)
where L and L′ are elements of GF/k and Gal(L/k) and Gal(L′/k) are
known.

3.2.1. Cohomology. Let F/k be an abelian extension of number fields.
Any extension L in GF/k satisfies an exact sequence

1 → ±1 → Gal(L/k) → Gal(F/k) → 1, (3.5)

and so determines a class εL in H2(F/k,±1) := H2(Gal(F/k),±1) which
is trivial if and only if L is in CF/k, as this is precisely when the sequence
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splits. Indeed, we shall see in Theorem 3.2.3 that if L′′ = L ◦ L′ then

εL′′ = εLεL′ ,

so we can consider GF/k/CF/k as a subgroup of H2(F/k,±1) under the
embedding L 7→ εL. Any admissible extension L in GF/k defines a cen-
tral extension of Gal(F/k) which means that Gal(L/F ) is contained in the
centre of Gal(L/k).

Let G be a finite abelian group, let ε be a class of H2(G,±1) and let
a be a 2-cocycle representing ε. We define ε∗ to be the bilinear alternating
form given by

ε∗(σ, τ) := a(σ, τ)a(τ, σ)−1 for all σ, τ ∈ G. (3.6)

and set

ε∗(σ) :=
s−1∏
i=0

a(σ, σi), (3.7)

where s is the order of σ in G.
The next two lemmas are proved in Section 2 of Fröhlich [11].

Lemma 3.2.1. Suppose that L/F/k are as in (3.5) and let εL be the class of
H2(F/k,±1) determined by Gal(L/k). For any σ, τ in Gal(F/k), let σ̃, τ̃
be elements of Gal(L/k) which map to σ and τ respectively in the exact
sequence (3.5). Identifying {±1} with a subgroup of Gal(L/k) as in (3.5),
and denoting the commutator σ̃τ̃ σ̃−1τ̃−1 by [σ̃, τ̃ ],

a) σ̃s = ε∗(σ) and
b) [σ̃, τ̃ ] = ε∗(σ, τ).

Lemma 3.2.2. If G is an abelian 2-group then any class ε of H2(G,±1) is
uniquely defined by the pair ε∗, ε∗.

Theorem 3.2.3 (Fröhlich [11] Theorem 2). Suppose that F/k is an abelian
extension of number fields and that L is an element of GF/k. Let φ be the
quadratic character of IF and ε the class of H2(F/k,±1) associated with
L. Let σ be an element of Gal(F/k) of order s > 1 and let α be an idele
of F 〈σ〉 such that (F/F 〈σ〉; α) = σ. Then for any τ in Gal(F/k) there exist
ideles βσ and γσ,τ of F satisfying

NF/F 〈σ〉(βσ) = αs, (3.8)

NF/F 〈σ〉(γσ,τ ) = aατ−1 for some a ∈ (F 〈σ〉)∗, (3.9)

and for any such ideles,

ε∗(σ) = φ(βσ), and ε∗(σ, τ) = φ(γσ,τ ).
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Proof. Let p be a prime ideal of k which does not ramify in F/k such that
(F/k; p) = σ, and let P be a prime of F 〈σ〉 dividing p. Then (F/F 〈σ〉; P) =
σ and we can choose α to be an idele such that vP(αP) = 1 and vQ(αQ) = 0
at every other prime Q of F 〈σ〉. We can take βσ to be the lift of α to IF ,
that is the idele with q-component αq whenever q divides q. Now

(F/F 〈σ〉; ατ ·α−1) = 1,

so ατ−1 is in the kernel of the Artin map, hence there exist a and γσ,τ
satisfying (3.9).

By Lemma 3.2.1

ε∗(σ, τ) = [σ̃, τ̃ ] and ε∗(σ) = σ̃s,

hence by Equations (3.8) and (3.9) and the properties of the Artin symbol it
follows that

(L/F ; βσ) = (L/F 〈σ〉; αs) = σ̃s,

and

(L/F ; γσ,τ ) = (L/F 〈σ〉; ατ ·α−1 · a) = [σ̃, τ̃ ].

�

For any abelian group G the subgroup S of H2(G,±1) corresponding
to abelian extensions of G is isomorphic to Ext1

Z(G,±1) (see Massy [27]
p. 510), and we shall denote S by Ext(G,±1) accordingly. A class ε be-
longs to Ext(G,±1) if and only if ε∗ = 1.

Let G̃ be an extension of G by ±1 and let ε be the class of H2(G,±1)

corresponding to G̃. Since ε∗(σ2, τ) = 1 for all σ, τ in G, by Lemma 3.2.1
the image of G2 under the natural embedding G ↪→ G̃ is always contained
in the centre of G̃, hence

|H2(G/G2,±1)/Ext(G/G2,±1)| = |H2(G,±1)/Ext(G,±1)|.
With this as justification we shall assume for the remainder of this section
that G is isomorphic to the elementary abelian 2-group of order 2n, which
we denote by C×n2 .

We now switch briefly from a multiplicative to an additive notion of
composition to investigate the structure of H2(G,F2) as a vector space over
F2. The groupG ∼= C×n2 is isomorphic to the additive group of an F2-vector
space of dimension n and we shall write

dimF2 G = n.

In this context ε∗ is the quadratic form satisfying

ε∗(σ) := a(σ, σ) + a(σ, 1) for all σ ∈ G, (3.10)

where a is a cocycle representing ε as in (3.7).
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Lemma 3.2.4 (Massy [27] Lemma 1(i)). For all elements σ, τ of G,

ε∗(στ) = ε∗(σ) + ε∗(τ) + ε∗(σ, τ).

Proposition 3.2.5. Let Q(G) be the F2-vector space of quadratic forms on
G, and let Alt(G,F2) denote the subspace of alternating quadratic forms.
The map

f : H2(G,F2) → Q(G), ε 7→ ε∗,

is an isomorphism of vector spaces, and the restriction of f to Ext(G,F2)
induces an isomorphism between Ext(G,F2) and Hom(G,F2).

Proof. See Equations (1.9) and (1.10) of Massy [27]. �

By Lemma 3.2.4, ε∗ is a homomorphism if and only if ε∗ = 0.

Corollary 3.2.6. Let n = dimF2 G. The sequence

0 → Ext(G,F2) → H2(G,F2) → Alt(G,F2) → 0.

is exact and

dimF2 H
2(G,F2) =

(
n+ 1

2

)
,

dimF2 Ext(G,F2) = n,

dimF2 Alt(G,F2) =

(
n

2

)
.

Corollary 3.2.7. Suppose that r2(F/k) = n. Then

GsF/k/As
F/k

∼= C×m2 for some m ≤
(
n

2

)
. (3.11)

Proof. By Corollary 3.2.6

dimF2 GF/k/AF/k ≤
(
n

2

)
,

so it remains to show that dimF2 GsF/k/As
F/k ≤ dimF2 GF/k/AF/k. This

follows from the observation that

dimF2 GF/k/CF/k · GsF/k ≥ dimF2 AF/k/CF/k · As
F/k.

�

We shall see in (3.16) that this upper bound is attained if k is an imagi-
nary quadratic field and F is the Hilbert class field of k.

We now return to multiplicative notation for cohomology classes. The
following lemma is fundamental in determining the structure of Gal(L/k)
for extensions L in GF/k. We denote the class of H2(F/k,±1) associated
with L by εL, and we shall write εL∗ for (εL)∗. For any groupGwe let Z(G)
denote the centre of G.
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Lemma 3.2.8. Let L/F/k be as above, and let G := Gal(F/k) and G̃ :=
Gal(L/k). Then

G̃/Z(G̃) ∼= C×2m
2 , with 0 ≤ m ≤

⌊n
2

⌋
, (3.12)

there are elements σ1, . . . , σ2m of G satisfying

εL∗(σ2i, σ2i−1) =−1, 1 ≤ i ≤ m,
εL∗(σi, σj) = 1 for all j 6∈ {i+ 1, i− 1},

and σ̃1, . . . , σ̃2m is a basis for G̃/Z(G̃).

Proof. Since εL∗ is bilinear, εL∗(σ2, τ) = 1 for all σ, τ in G, so G2 is con-
tained in Z(G̃), hence we must have G̃/Z(G̃) ∼= C×b2 for some integer
b ≥ 0.

To see that b must be even, suppose that εL∗(σ1, σ2) = −1 and that
εL∗(σ3, τ) = −1 for some τ in G. By the bilinearity of εL∗, if σ3 6= σ1σ2

then σ̃3 must commute with σ̃1 and σ̃2, and the result follows. �

Definition 3.2.9. Let m be a non-negative integer. We define

G(m)
F/k := {L ∈ GF/k : Gal(L/k)/Z(Gal(L/k)) ∼= C×2m

2 }.

For m > 0, G(m)
F/k is not a subgroup of GF/k, but by Theorem 3.2.3, it is

closed under the action of ◦ with AF/k = G(0)
F/k. We shall often find it useful

to consider G(m)
F/k as a collection of AF/k-cosets.

Lemma 3.2.10. Suppose that L1 and L2 are in G(1)
F/k and for i = 1, 2 define

Gi := Gal(Li/k), Zi := Z(Gi) and Si := Gal(LZi/k). Let S := S1 ∩ S2

and L := L1 ◦ L2. Then |S1| = |S2| = 4 and
a) if |S| = 4 then L ∈ AF/k,
b) if |S| = 2 then L ∈ G(1)

F/k,

c) if |S| = 0 then L ∈ G(2)
F/k.

Proof. Cases a) and c) are simple consequences of the properties of ε∗. In
case b), let G0 be the subgroup of Gal(F/k) generated by S1S2. This is a
non-cyclic group of order 8, hence by Lemma 3.2.8 must contain an element
of order 2 which maps into the centre of Gal(L/k). �

The following special case will be particularly useful. Setting G :=
Gal(F/k), let σ1, . . . , σn be a basis for G/G2 and let Fi,j = F 〈σi,σj〉. Sup-
pose that L1 and L2 are as in the lemma above, with L1/Fi,j and L2/Fj,`
non-abelian. Then ε∗(σiσ`, τ) = 1 for all τ in Gal(L/k).

As a generalization of Lemma 3.2.10 we obtain:
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Proposition 3.2.11. Suppose that Li ∈ G(ri)
F/k and let Zi := Z(Gal(Li/k))

and Si := Gal(LZi/k) for i = 1, 2. Let S := S1 ∩ S2, T := S1S2 and
L := L1 ◦ L2. Then L belongs to G(r)

F/k where

r :=
log2 |T | − log2 |S|

2
.

3.2.2. Admissible Groups. Suppose that F/k is an extension of num-
ber fields with Galois group isomorphic to C×n2 and let L be an element
of GF/k. In this section we will determine the groups which may occur as
G := Gal(L/k), that is which satisfy Lemma 3.2.8. We will make use
of the theory of polycyclic groups, which we introduce briefly below. For
more details see Sims [60] Chapter 9. For proofs of Lemma 3.2.18, Propo-
sition 3.2.19 and Theorem 3.2.21, see Appendix A.

Definition 3.2.12. Let G be a group. A series of subgroups

G = G1 DG2 D · · ·DGm DGm+1 = 1

is a polycyclic series for G if
a) Gi+1 is a normal subgroup of Gi, and
b) the quotient Gi/Gi+1 is cyclic

for 1 ≤ i ≤ m.

Definition 3.2.13. If G has a polycyclic series we say that G is a polycyclic
group.

It is well known that all finitely generated nilpotent groups are poly-
cyclic. We shall only consider polycyclic groups of finite order, (i.e. soluble
groups).

Let G be a polycyclic group with polycyclic series

G = G1 ≥ G2 ≥ · · · ≥ Gm ≥ Gm+1 = 1,

and suppose that the quotientGi/Gi+1 has order ri for 1 ≤ i ≤ m. For each
i between 1 and m let σi denote an element of G whose image in Gi/Gi+1

has order ri. Then σ1, . . . , σm is a polycyclic generating sequence for G.
We may assume that σi never belongs to Gi+1.

Definition 3.2.14. A collected word with respect to σ1, . . . , σm is a word of
the form

σa1
1 σ

a2
2 · · ·σam

m ,

where 0 ≤ ai < ri for 1 ≤ i ≤ m.

Lemma 3.2.15. Every element g ofG has a unique expression as a collected
word with respect to σ1, . . . , σm.

Proof. See Sims [60] Section 9.4. �
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It is a (potentially confusing) convention of polycyclic presentations of
groups that if a commutator relation is not given for a pair of generators
σi, σj , it is assumed that they commute. For any group G, let Σi(G) denote
the number of elements of G of order i. The identity element of G will be
denoted by 1.

Definition 3.2.16. Let n be an even integer.
a) We define Dn to be the polycyclic group generated by σ1, . . . , σn+1

where

[σ2a−1, σ2a] = σn+1, for 1 ≤ a ≤ n/2, (3.13)

and σ2
i = 1 for 1 ≤ i ≤ n+ 1.

b) Let Qn be the polycyclic group generated by σ1, . . . , σn+1 where
(3.13) holds and σ2

1 = σ2
2 = σn+1 and σ2

i = 1 for 3 ≤ i ≤ n+ 1.
c) Let Bn+1 be the polycyclic group generated by σ1, . . . σn+2 where

σ2a−1σ2aσ
−1
2a−1 = σ2aσn+2, for 1 ≤ a ≤ n/2,

σ2
1 = . . . = σ2

n = σ2
n+2 = 1 and σ4

n+1 = 1.

Remark 3.2.17. The groups D2 and Q2 are respectively the dihedral and
quaternion groups of order 8. To visualise Bn+1 it may be helpful to notice
that the generators σ1, . . . , σn, σn+2 satisfy the defining relations of a gener-
ating set for a subgroup S isomorphic to Dn and if s is in S then sσn+1 has
order 2 if s has order 4, and order 4 otherwise. The standard description of
Bn+1, which we use in Appendix A, is as the central product of either Dn

or Qn with C4.

Lemma 3.2.18. Let n be an even integer. The groups G defined in Defini-
tion 3.2.16 have the properties described in the following table:

G #G Σ4(G) Z(G)
Dn 2n+1 2n − 2n/2 C2

Qn 2n+1 2n + 2n/2 C2

Bn+1 2n+2 2n+1 C4

Proposition 3.2.19. Let n ≥ 2 be an even integer. If G is a group of order
2n+1 with a minimal generating set of size n and centre of order 2, which
satisfies the conditions of Lemma 3.2.8 then G is isomorphic to either Dn

or Qn. If G is a group of order 2n+2 with a minimal generating set of size
n + 1 and centre of order 4, then G must be isomorphic to either Bn+1,
C2 ×Dn or C2 ×Qn.

Definition 3.2.20. Let m and n be integers with n ≥ 2, 0 ≤ m < n and
n − m even. If n is even and m = 0 then define Tn,m := {Dn,Qn},
otherwise

Tn,m := {Dn,m,Bn,m,Qn,m},
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where

Dn,m := C×m2 ×Dn−m,

Qn,m := C×m2 ×Qn−m and

Bn,m := C×m−1
2 ×Bn+1−m.

Theorem 3.2.21. Let m and n be as in Definition 3.2.20. If G̃ is a group
satisfying Lemma 3.2.8 of order 2n+1 with n generators and centres of order
2m+1, then G̃ is isomorphic to a group in Tn,m.

Corollary 3.2.22. Let L be an element of GF/k. Then Gal(L/k) is uniquely
determined by its centre and the number of elements of order 4.

Thus we now have a full list of the groups which may occur as Gal(L/k)
for L in GsF/k.

3.2.3. Cyclicity Vectors and Gal(L ◦ L′/k). We shall say that an ex-
tension L/k is of type G if Gal(L/k) is isomorphic to G. Given extensions
L/k and L′/k of types G and G′, we would like to determine the type of
L ◦ L′. In particular, we shall examine extensions of the form A ◦ L where
A is an abelian extension of k. One of our most useful tools for this task
will be addition of cyclicity vectors which we introduce below.

Let σ0, . . . σ2n−1 be an ordering of the elements of G := Gal(F/k)
such that σ0 is the identity element, and σ1, . . . σn is a polycyclic generating
sequence for G. Let J := {j1, . . . , jm} be a subset of {1, . . . , 2n−1}. We
define FJ to be the maximal subfield of F fixed by 〈σj : j ∈ J〉. We say that
σj divides g if σj appears in the unique representation of g as a collected
word with respect to the basis {σ1, . . . , σn}.

Definition 3.2.23. Let L be an element of GF/k. Fixing an ordering of
Gal(F/k) as above, we define the cyclicity vector sL to be the element
of F2n−1

2 which has ith component s(i)
L = 1 if and only if Gal(L/Fi) ∼= C4.

In addition, we define
sL(σi) := s

(i)
L .

Lemma 3.2.24 (Vaughan [63]). Suppose that L and L′ are elements of GF/k
and let L′′ = L ◦ L′. Then

sL′′ = sL + sL′ . (3.14)

Definition 3.2.25. For any element s of F`2, we define the length of s to be `
and the weight of s, w(s) to be the number of non-zero entries of s.

Example 3.2.26. We construct examples of cyclicity vectors for admissible
extensions of all possible types when n−m = 2.

a) If L is of type C×n+1
2 then sL is the all-zero vector.
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b) If L is of type C×n−1
2 × C4 then sL is a finite sum of vectors sj :=

(sj(g)), with 1 ≤ j ≤ n where sj(g) = 1 if and only if σj divides g.
c) If L is of type Dn,n−2, the extension L/F1 is cyclic and L/F 〈σ1σ2〉 ∼=
C2 × C2 then sL(g) = 1 if and only if σ1 divides g and σ2 does not
divide g.

d) If L is of type Qn,n−2 and L/F1 and L/F2 are cyclic then sL(g) = 1
if and only if at least one of σ1 and σ2 divides g.

e) If L is of type Bn,n−2 and L/F1 and L/F 〈σ2σ3〉 are both cyclic then
sL(g) = 1 if and only if

- σ1 divides g and neither σ2 nor σ3 divides g or
- σ2σ3 divides g and σ1 does not divide g.

Retaining the notation developed above, suppose that F/Q is normal,
F/k is of type C×n2 and dimF2 GF/k/AF/k =

(
n
2

)
. We shall now investigate

the frequency with which each group in Tn,m may occur as Gal(L/k) for L
in GF/k.

Lemma 3.2.27. Suppose that n ≥ 3. Let A be an element of AF/k such
that Gal(A/k) ∼= C×n−1

2 × C4 and Gal(A/Fi,j) ∼= C×3
2 , and let L be an

element of G(1)
F/k with Gal(L/k) isomorphic to C×n−2

2 ×Gal(L/Fi,j). Then
Gal(A ◦ L/k) is isomorphic to Bn,n−2.

Proof. Let A and L be as in the statement of the lemma. We must have
Gal(L/k) isomorphic to either Dn,n−2 or Qn,n−2, and we will have proved
the assertion if we can show that w(sA◦L) = 2n−1.

If we suppose that Gal(L/k) ∼= Dn,n−2, then we may order our basis
so that sL(g) = 1 if and only if σ1 divides g and σ2 does not, and that
sA(g) = 1 if and only if σ3 divides g.

Suppose that σ3 divides g. This occurs 2n−1 times. Of these σ1 will
divide g 2n−2 times and σ1σ2 will divide g 2n−3 times, so there are 2n−3

distinct g for which sL(g) = sA(g) = 1, hence

w(sA◦L) = w(sA) + w(sL)− 2 · 2n−3

= 2n−1 + (2n−1 − 2n−2)− 2n−2

= 2n−1 = w(sA)

as claimed. Similarly, if Gal(L/k) ∼= Qn,n−2, then we order our basis so
that sL(g) = 1 if and only if σ1 or σ2 (or both) divide g. In this case there
are 2n−2 + 2n−2 − 2n−3 = 2n−2 + 2n−3 distinct elements of G for which
sL(g) = sA(G) = 1, hence

w(sA◦L) = w(sA) + w(sL)− 2 · (2n−2 + 2n−3)

= 2n−1 + (2n−1 + 2n−2)− (2n−1 + 2n−2)

= 2n−1 = w(sA).
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�

Lemma 3.2.28. Suppose that n ≥ 3. Let L be an element of G(1)
F/k with

Gal(L/Fi,j,`) ∼= B3 and Gal(L/Fi,j) ∼= D2, and let A be an element of
AF/k. For i in {1, . . . , n}, let vi denote the element of F2n−1

2 which has jth
component 1 if and only if σi divides σj . If

sA = v` + v for some v ∈ 〈vi, vj〉,

then A ◦ L is not of type Bn,n−2.

Proof. It follows directly from the construction of Bn in Remark 3.2.17
that if sL + v` is the cyclicity vector of an extension L′/F/k that extension
is of type Dn,n−2, and is dihedral of order 8 over Fi,j . �

Definition 3.2.29. Let L be an element of GsF/k, and let S be a set of rep-
resentatives of the equivalence classes of AF/k/CF/k. For any group G we
define

N(G, L) := |{A ∈ S : Gal((A ◦ L)/k) ∼= G}|.

Proposition 3.2.30. If |S| = n then for any L in G(1)
F/k,

N(Dn,n−2, L) = 3, N(Qn,n−2, L) = 1 and N(Bn,n−2, L) = 2n − 4.

Proof. Suppose that Gal(L/k) ∼= Dn,n−2 or Qn,n−2 and that Gal(L/Fi,j)
is non-abelian. By Lemma 3.2.27, there are at least as many Bn,n−2 ex-
tensions in S ◦ L as there are fields A in S with Gal(A/Fi,j) ∼= C×3

2 and
Gal(A/k) ∼= C4 × C×n−1

2 . Since |S| = n there are 2n − 4 such A and
the result follows at once. On the other hand if Gal(L/k) ∼= Bn,n−2 then
we saw in Lemma 3.2.28 that there exists an abelian extension A in As

F/k

such that A ◦ L is of type Dn,n−2, and the result follows by the argument
above. �

We now relax the condition on n and m, and extend the definition of
Tn,m to the case where n = m, by setting Tn,n := {C4 × C×n−1

2 }. Recall
that n −m is always an even non-negative integer and that if L belongs to
GF/k and Gal(L/k) is in Tn,m then L is in G(r)

F/k, where r := (n−m)/2.
The next result is a generalization of Lemma 3.2.27.

Lemma 3.2.31. Suppose that L is an element of GF/k of type Dn,m and let
GL be a subgroup of Gal(F/k) such that L/FGL is of type Dn. If there
exists a field A in AF/k such that Gal(A/FGL) contains no elements of
order 4 then A ◦ L is of type Bn,m.

Proof. We retain the notation of Lemma 3.2.27. Again we wish to prove
that w(sA◦L) = w(sA). Let r := (n−m)/2. We have sL(g) = sA(g) for g
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in Gal(F/k) when σ1σ2 divides g and σ3 . . . σr+2 does not. This will occur
2n−2 − 2n−(r+2) times, and so

w(sA◦L) = 2n−1 + 2n−1 − 2n−r−1 − 2(2n−2 − 2n−r−2) = w(sA).

�

A similar statement holds if L/k is of type Qn,m. Therefore if Gal(L/k)
is in Tn,m, and c4(F/k) = n then N(Bn,m, L) ≥ 2n − 2n−m.

On the other hand, since Bn,m may be constructed via a dihedral group
of type Dn−1,m−1, it follows analogously to the proof of Lemma 3.2.28 that
if L is of type Bn,m then there will be either 0 or 2n−m extensions of type
Dn,m or type Qn,m in S ◦ L, the former if |S| = n.

Proposition 3.2.32. Suppose that |S| = n. Let L be an element of GF/k of
type Dn,m (resp. Qn,m) and let r := (n−m)/2. Then

N(Bn,m, L) N(Dn,m, L) N(Qn,m, L)
2n − 22r 22r−1 + 2r−1 22r−1 − 2r−1

Proof. Let L be as in the statement of the lemma and let K be an exten-
sion of k contained in F such that Gal(L/K) is isomorphic to Dn−m,0 or
Qn−m,0. Let A be the subgroup of S generated by the elements which are
cyclic overF 〈σ〉 for some σ in Gal(F/K). IfA is in S then by Lemma 3.2.31,
A belongs to A if and only if A ◦ L is not of type Bn,m. Therefore

fD + fQ = |A| = 2n−m, (3.15)

where fD = N(Dn,m, L) and fQ = N(Qn,m, L). Now consider the cyclic-
ity vectors sA◦L = sA + sL. Let wD and wQ be the weights of the cyclicity
vectors of extensions of type Dn,m and type Qn,m respectively. Because we
are applying the same translation to sA for all A in A, we see that

2n−mwA = fDwD + fQwQ,

and substituting the values of wA, wD and wQ and combining with (3.15)
gives us the result. �

3.3. Admissible Extensions and Quadratic Twists

Having developed some general theory for towers of extensions L/F/k
with L/F quadratic, F/k abelian and L/k normal, we shall now apply it
to towers where k/Q is an imaginary quadratic field and F is a field of
definition for an elliptic curve with CM by an order of k.

Let K be an imaginary quadratic field, let H be the Hilbert class field
of K and suppose that DK is divisible by n + 1 distinct primes. Let Fg be
the genus field of K, and recall that Fg is the maximal subfield of H which
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Gal(Fg/K) ∼= C×n2

G2 := {g ∈ Gal(H/K) : g2 = 1}

Gal(H/HG2) ∼= C×n2

is abelian over Q. The first major result of this section is the theorem of
Nakamura [34] that

dimF2 GsH/K/As
H/K =

(
n

2

)
. (3.16)

Next we shall investigate the structure of As
H/K . The second main result

of this section is Proposition 3.3.23 where we prove that for all imaginary
quadratic fields K with discriminants DK divisible by at least 2 distinct
rational primes,

n− r4(H/K)− 1 ≤ c4(H/K) ≤ n− r4(H/K).

Applying results of Gerth [12] on the 4-rank of the class group of imag-
inary quadratic fields we shall see that for all n ≥ 1 there are an infinite
number of imaginary quadratic fields K with c4(H/K) = n.

Let n := r2(H/K) and let

DK = p∗1 . . . p
∗
n+1 (3.17)

be a decomposition of DK into a product of prime discriminants as in
Proposition 2.2.2, with the convention that if 2 divides DK then pn+1 = 2.
By a dihedral extension, we shall mean an extension with Galois group
isomorphic to the dihedral group of order 8, which we denoted D2 in Sec-
tion 3.2.2.

Proposition 3.3.1 (Nakamura [34]). For any integers i, j such that 1 ≤
i < j ≤ n there exists a dihedral extension L/K containing K(

√
p∗i ,
√
p∗j)

such that L/Q is normal.

Equation (3.16) is an immediate corollary to this proposition, which we
shall prove, following Nakamura [34] as a consequence of Lemmas 3.3.3,
3.3.2 and 3.3.6 below. We begin by recalling some background on dihedral
extensions.
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Let k be a number field and let F/k be an extension with

Gal(F/k) = 〈σ, τ〉 ∼= C2 × C2.

An extension L ∈ GF/k is a dihedral extension of k if and only if it is cyclic
over precisely one of F 〈σ〉, F 〈τ〉, and F 〈στ〉, hence the cohomology class of
the extension L/F/k is determined by knowledge of this subfield.

Let d1 and d2 be elements of k and let p be a prime of k. We denote the
quadratic Hilbert symbol by

(
d1,d2

p

)
and recall that(

d1, d2

p

)
=

{
1 if d1 is a norm in kp(

√
d2)/kp,

−1 otherwise.

and that
(
d1,d2

p

)
=
(
d2,d1

p

)
. For more properties of the Hilbert symbol, see

for example Neukirch [35] Section V.3. We shall make frequent use of the
fact that the conic

x2 − d1y
2 − d2z

2 = 0,

has k-rational points if and only if(
d1, d2

p

)
= 1

for all primes p of k ramifying in k(
√
d1,

√
d2), and that if this is the case

and P = (x : y : z) is such a point, the field F := k(
√
x+ y

√
d1,

√
d2) is a

dihedral extension of k which is cyclic of degree 4 over k(
√
d1d2). If d1 and

d2 are rational integers then we may choose P so that the extension F/k is
unramified outside primes dividing 2d1d2 and if d1 and d2 are discriminants,
then we may choose P to ensure that F/k is unramified outside d1d2, (see
Rédei and Reichardt [38]). We summarize the last part of this discussion as
Lemma 3.3.2 for ease of reference.

Lemma 3.3.2. Let k be either Q or K. If there exist discriminants d1 and
d2 dividing DK such that (

d1, d2

p

)
= 1,

for all primes p of k dividing d1d2 then there exists a dihedral extension
F/k containing k(

√
d1,

√
d2), cyclic over k(

√
d1d2) and unramified outside

d1d2.

We call such a pair (d1, d2) a partial decomposition of DK . If F is as
in Lemma 3.3.2 then the compositum FH is either equal to, or a quadratic
extension of, H . In this section we shall mostly consider the case where
d1 and d2 are both prime discriminants and in Section 3.3.2 the case where
d1d2 = DK .
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Lemma 3.3.3. For any odd primes pi and pj dividing DK there exist dis-
criminants d1, d2 dividing pipj and satisfying the conditions of Lemma 3.3.2
with k equal to K.

Proof. See Nakamura [34] p. 639. �

Example 3.3.4. If pi ≡ pj ≡ 3 mod 4 we may always take k = Q in

Lemma 3.3.2, since in this case
(
−pi

pj

)
= −

(
−pj

pi

)
.

Proposition 3.3.5. Let F be an algebraic number field such that F/Q is
normal and G := Gal(F/Q) is an abelian 2-group, let DF be the discrimi-
nant of F/Q and let ε be a class in H2(G,±1). If there exists an extension
L in GF/Q of type ε, then there exists an extension L′ of type ε unramified
outside primes dividing DF .

Proof. This is Corollary 1 to Theorem 5 of Fröhlich [11]. �

Lemma 3.3.6 (Nakamura [34] Lemma 1). Let F/K be a dihedral extension
containing K(

√
p∗i ,
√
p∗j). Then there exists a Dirichlet character κ of K

such that ifLκ is the extension ofH corresponding to the character κ◦NH/K

and L := F ◦ Lκ, then L/Q is normal.

Since Lκ is K-trivial, L/K is dihedral and Proposition 3.3.1 is proved.
As k := K(

√
p∗i ,
√
p∗j) is abelian over Q, by Proposition 3.3.5 there is an

extension L′ in the same class in H2(k/Q,±1) such that L′ is unramified
outside primes dividing DK . Since these extensions L′H form a basis for
GsH/K over As

H/K we have shown:

Corollary 3.3.7. Every class in GsH/K contains a representative unramified
outside DK .

Corollary 3.3.8. The map from GsH/K to Alt(H/K,±1) sending L to εL∗ is
surjective.

3.3.1. Admissible Extensions of Ring Class Fields. LetK be an imag-
inary quadratic field with DK < −4, let O be a proper suborder of OK and
set F := HO, the ring class field of O.

Let S be the set of odd primes dividing D := DO, the discriminant of
O, and let T be the subset of {−8,−4, 8} such that

XD = {ηp : p ∈ S ∪ T},
where XD is as defined in Definition 2.2.6. Let f be the positive integer
such that D = f 2DK and set µ := |XD|.
Lemma 3.3.9. Let p be an odd prime. Then for some s in {−8,−4, 8} there
exists a dihedral extension of Q containing Q(

√
p∗,

√
s) unramified outside

2p.
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Proof. Clearly this depends only on the congruence class m ≡ p mod 8.
By quadratic reciprocity we may take:

m 1 3 5 7
s any −8 −4 8

�

Proposition 3.3.10. Let K be an imaginary quadratic field, let O be an
order of K and let S, T and µ be as above. Then setting F := HO, we have

dimF2 GF/K/AF/K =

(
µ− 1

2

)
. (3.18)

Proof. Let Sf be the set of odd prime divisors of f and set

N := DK

∏
p∈Sf

p∗.

Since the proof of Proposition 3.3.1 nowhere relies upon the fact that K is
imaginary quadratic, it follows that for any pair of odd primes pi, pj dividing
N that there is a dihedral extension of Q(

√
N) which is normal over Q

and contains Q(
√
p∗i ,
√
p∗j). We need to check when these extensions are

dihedral over K(
√
N). If pi and pj both divide DK then by Lemma 3.3.3

there exists such an extension over K so we may assume that pi does not
divide DK . But then the extension becomes C2 × C2 over K(

√
N) only if

N = p∗iDK or N = pipjDK .
If DK and f are both odd, or if |T | = 1 then we are done. If not then by

Lemma 3.3.9, for every odd prime pi dividing DO there exists some s ∈ T
such that there is a dihedral extension of Q containing Q(

√
p∗i ,

√
s) which

yields the result. �

Corollary 3.3.11. With F and K defined as above the map from GsF/K to
Alt(F/K,±1) sending L to εL∗ is surjective.

3.3.2. Abelian Extensions ofK. LetK be a quadratic field, either real
or imaginary. IfK is real then we letH be the Hilbert class field ofK in the
‘strict’ sense: that is H is the maximal abelian extension of K unramified
outside the infinite places of K. The class group Cl(K) of K is taken to be
the class group of K corresponding to H . In either case if DK is divisible
by t distinct primes, the 2-rank of H/K is equal to n := t−1 and the genus
field of K is

Fg := Q(
√
p∗1, . . .

√
p∗t ), where DK =

t∏
i=1

p∗i .
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Definition 3.3.12. Let GK be the group of quadratic characters defined in
(2.15) and define ΓK to be the group of quadratic characters ϕ of IK such
that

a) if p is finite then either ϕp = 1 or ϕp ∈ GK and
b) ϕ ◦ NH/K is a Dirichlet character of IH .

The definition of GK ensures that every element of ΓK is ramified only
at primes dividing DK , and if K is real, possibly at infinite places of K.
Let M be the compositum of the fields L in As

H/K which have Dirichlet
characters of the form ϕ ◦ NH/K with ϕ ∈ ΓK . Define A := AFg/Q,M to be
the group of quadratic extensions of Fg contained inM and C := CFg/K,M to
be the subgroup of fieldsL inAwith the property that Gal(L/K) ∼= C×n+1

2 .
The main advantage of working with extensions of Fg rather than H is

that Fg/Q is abelian.

Lemma 3.3.13. Let F0 and k be abelian extensions of Q such that F0∩k =
Q, and let F := F0k. Let H be the subgroup of H2(F/k,±1) correspond-
ing to quadratic extensions L/F such that L := L0k where L0 is a qua-
dratic extension of F0 which is normal over Q. Then the map from H to
H2(F0/Q± 1) sending

εL 7→ εL0

is injective.

Proof. Let F, F0 and k be as above and suppose that L = L0k and L′ =
L′0k are elements of GF/k which represent different classes inH2(F/k,±1).
Then the Dirichlet characters of IF corresponding to the extensions L/F
and L′/F are

φL := φ ◦ NF/F0 and φL′ := φ′ ◦ NF/F0

where φ and φ′ are the quadratic Dirichlet characters of IF0 corresponding
to L0/F0 and L′0/F0 respectively. Now if L0 and L′0 represent the same
class in H2(F0/Q,±1) then there exists a quadratic Dirichlet character η of
IQ such that φ′φ−1 = η ◦ NF0/Q . But then

φL′ = ((η ◦ NF0/Q)φ) ◦ NF/F0

= (η ◦ NF/Q) · φL,

which implies that L and L′ represent the same class inH2(F/k,±1) which
is a contradiction. �

Proposition 3.3.14 (Fröhlich [11] Corollary 1 to Theorem 11). Let F be
as in Proposition 3.3.5 and suppose either that DF is odd or else that F
contains Q(

√
−1,

√
2). Let p be a prime dividing DF , let L be an element

of GF/Q of type ε and suppose that every prime dividing p is unramified in
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the extension L/F . Then p is unramified in L′/F for all extensions L′ of
type ε.

Corollary 3.3.15. The natural map from A to H2(Fg/Q,±1) sending L to
εL is injective.

Proof. Suppose that DK is odd and that there exist L1, L2 in A such that
εL1 = εL2 . By Proposition 3.3.14 the extension L := L1 ◦ L2 must be
unramified, since if L1 and L2 are ramified at all the same primes dividing
DK they must differ by some character of Cl(K). But then L is contained
in H and L/Q is abelian, hence L is contained in Fg and L1 = L2.

If DK is even let k be a quadratic field such that F := Fgk satisfies
the condition of Proposition 3.3.14. Our choice of ΓK means that there are
no two elements L1, L2 of A such that L1 ◦ L2 = F hence the map from
A to H2(F/Q,±1) defined by L 7→ εLk is injective. Moreover the map
A → H2(F/k,±1) is injective and by Lemma 3.3.13 H2(F/k,±1) injects
into H2(Fg/Q,±1). �

Lemma 3.3.16. If K is imaginary, or if K is real and DK is divisible by
some prime p ≡ 3 mod 4 then every element of C except the identity is of
type D2 × C×n−1

2 .

Proof. if DK is negative or divisible by some prime p ≡ 3 mod 4, it cannot
be the sum of two squares in Q, therefore there are no extensions F of Q
of type C2 × C4 containing K such that F/K ∼= C×2

2 . It follows that every
element L of C is non-abelian over Q.

Since L/K is abelian, the Galois group of L/Q must be isomorphic to
one of D2 ×C×n−1

2 , Q2 ×C×n−1
2 and B3 ×C×n−2

2 . In the latter two cases,
Gal(L/K) would be isomorphic to C4 × C×n−1

2 which is a contradiction.
�

We have reduced the problem of determining c4(H/K) whenK is imag-
inary to one of counting dihedral extensions L of Q such that L ∩ Fg is a
biquadratic field containing K and L/K is not cyclic.

Definition 3.3.17. We say that a pair of integers (d1, d2) is a decomposition
of DK if d1 and d2 are discriminants such that d1 > 0, d1d2 = DK and(

di
p

)
= 1, for all primes p dividing dj, i, j ∈ {1, 2}, i 6= j. (3.19)

The requirement that d1 and d2 are discriminants such that d1d2 = DK

ensures that each di may be written as a product of prime discriminants

di =
∏
j∈Ji

p∗j where DK =
∏
J1∪J2

p∗j .
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Two decompositions (a1, a2) and (b1, b2) are independent if there exists
no integer m such that b1 ≡ a1m and b2 ≡ a2m modulo squares in Z, and
dependent otherwise.

Let (a1, a2) and (b1, b2) be distinct decompositions of DK and for i =
1, 2 let di be the product of all the prime discriminants p∗ dividing DK

such that p∗ divides a1 or bi but not both. By construction d1 and d2 are
discriminants with the property that d1d2 = DK . If a prime p dividing d2 is
coprime to a1b1 then (

d1

p

)
=

(
a1b2
p

)
= 1,

and if p divides both a1 and b1, then(
a1/p

∗

p

)(
a2

p

)
=

(
b1/p

∗

p

)(
b2
p

)
, so

(
a1/p

∗

p

)
=

(
b1/p

∗

p

)
,

and (3.19) holds for i = 1. The situation is just the same for primes dividing
d1, so (d1, d2) is a decomposition of DK .

We call (d1, d2) the product of (a1, a2) and (b1, b2). Since any decompo-
sition of DK is uniquely defined by its first element, the product of (a1, a2)
and (b1, b2) is equal to the product of (b1, b2) and (a1, a2). We have shown:

Proposition 3.3.18. Suppose that DK has r independent decompositions
with r ≥ 1. The set of decompositions ofDK generates a group with identity
element (1, DK) congruent to C×r2 .

Proposition 3.3.19. The number of independent decompositions of DK is
equal to r4(H/K), the 4-rank of the class group of K.

Proof. We outline the proof given in Rédei and Reichardt [38].
Suppose that there exists a cyclic extension F/K of degree 4 contained
in H . Because H/K is unramified, Gal(H/Q) is the semidirect product
of Gal(H/K) and Gal(K/Q) so the extension F/Q is dihedral. Let k
be the biquadratic extension of Q contained in H . We may write k =
Q(
√
d1,

√
d2) for some discriminants d1, d2 such that DK = d1d2. We

claim that (d1, d2) satisfies (3.19): this is equivalent to the claim that for
any prime p of F dividing d1 (resp. d2), the field Q(

√
d2) (resp. Q(

√
d1)) is

contained in the decomposition field of p.
Conversely let (d1, d2) be a decomposition of DK . By (3.19), we have(

d1, d2

p

)
= 1 for all primes p dividing DK ,

hence the conic x2 − d1y
2 − d2z

2 = 0 has rational points (x : y : z) with
y 6= 0, any of which which define a dihedral extension F/Q containing
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k := Q(
√
d1,

√
d2) and cyclic over K by

F := k(x+ y
√
d1).

It is shown on p. 72 of Rédei and Reichardt [38] that we may choose a point
(x : y : z) so that F/K is unramified and hence F is contained in H .

�

Lemma 3.3.20. Let A be as defined on p. 58 and suppose that there exists
a non-trivial discriminant d dividing DK such that(

DK , d

p

)
= 1 for all primes p|DK .

Then there exists an extension L in A such that L/K is of type C×n+1
2 .

Proof. Suppose that such a discriminant d exists, and let a := DK/d.
There exists a dihedral extension F/Q unramified outside DK containing
K(
√
d) and cyclic of degree 4 over Q(

√
a). Now Gal(F/K) ∼= C×2

2 , hence
Gal(FFg/K) ∼= C×n+1

2 . Therefore FFg is Q-equivalent to some non-trivial
extension L in AFg/K . �

Corollary 3.3.21. Suppose that DK = −4d for some odd integer d. Then
there exists an extension L in A such that L/K is of type C×n+1

2 .

Proof. This follows immediately from Lemma 3.3.20 and the properties of
the Hilbert symbol since(

DK , d

p

)
=

(
−4d, d

p

)
=

(
−d, d
p

)(
4, d

p

)
=

(
4, d

p

)
=

(
2, d

p

)(
2, d

p

)
= 1.

�

Lemma 3.3.22 (Rédei [39] p. 56). Let S be the set of positive, squarefree
integers d dividing DK , such that the conic

dx2 − d′y2 − z2 = 0, where d′ := DK/d (3.20)

has a rational solution. Let r := r4(H/K) be the 4-rank of Gal(H/K).
Then

2r =
|S|
2
.

Proposition 3.3.23. Let K be an imaginary quadratic number field with
discriminant DK divisible by at least 2 distinct rational primes. If DK ≡
4 mod 8 and DK is divisible by some prime p ≡ 3 mod 4 then

n− r4(H/K)− 1 ≤ c4(H/K) ≤ n−max{1, r4(H/K)},
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and otherwise
c4(H/K) = n− r4(H/K).

Proof. Let S be as in Lemma 3.3.22 and let d be an element of S. Let C be
the group of extensions defined on p. 58. Multiplying both sides of (3.20)
by −d we have

−d2x2 +DKy
2 + dz2 = 0,

hence (3.20) has a rational solution if and only if

DKx
2 + dy2 − z2 = 0 (3.21)

does, and this holds if and only if
(
DK ,d
p

)
= 1 for all primes dividing

DK . Therefore if
√
d is contained in H , Equation (3.21) corresponds to an

element of C, which is non-trivial if d 6= 1.
Suppose that DK is odd. Then by the above discussion there is a bijec-

tion between C and the elements d of S such that d ≡ 1 mod 4 which is true
for exactly |S|/2 different d because if P =

∏
p∗i satisfies (3.20) then |P |

and |DK/P | will both belong to S and precisely one of these is congruent
to 1 modulo 4.

Suppose thatDK is divisible by 8 and let s = 2∗ be the integer defined in
(3.17). By the above argument we see that an odd element of S corresponds
to an element of C if and only if it is congruent to 1 mod 4. Suppose that
d is an even element of S. Then if s = 8 (s = −8), d corresponds to an
element of C if and only if d/2 ≡ 1 mod 4 (d/2 ≡ 3 mod 4) respectively,
hence for any d in S precisely one of d and |DK/d| satisfy our condition.

Suppose thatDK is precisely divisible by 4. Then
√
−1 is inH so every

odd element of S will correspond to an element of C. By the multiplicity of
the Hilbert symbol, either half or all of the elements of S must be odd, and
the requirement c4 ≤ n−1 if DK is divisible by some prime p congruent to
3 mod 4 follows from Corollary 3.3.21 and the fact that by Corollary 2.2.18
there are 2n quadratic Dirichlet characters of IK unramified outside DK .

Finally, if DK is divisible by n distinct primes pi congruent to 1 mod
4 then by Corollary 1.7(C) of Vaughan [63] there exists a C2 × C4 exten-
sion of Q containing K(

√
pi) which is C×2

2 over Q(
√
pi), so we must have

c4(H/K) = n− r4(H/K). �

Remark 3.3.24. If DK > 0 then we cannot obtain such a bound in general,
because with notation as in the proof of Proposition 3.3.23, if P satisfies
(3.20) then either both or neither of |P | and |DK/P | may be congruent to 1
modulo 4. However, for any given DK this does give us a criterion for the
existence of extensions in C.

Example 3.3.25. Let K be an imaginary quadratic field with discriminant
DK = −4d where d is odd and divisible by some prime congruent to 3
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modulo 4. If r4(H/K) = 0 then Proposition 3.3.23 tells us that c4(H/K) =
n−1. If r4(H/K) > 0 then there are two possibilities, both of which occur:

DK Gal(H/K) c4(H/K)
−1045 = −4 · 5 · 11 · 19 C×2

2 × C4 1
−1140 = −4 · 3 · 5 · 19 C×2

2 × C4 2

The characters λ in G+
K such that λ ◦ NH/K is the Dirichlet character of an

extension L/H in CsH/K are:

DK λ
−1045 〈λ−4λ5, λ11λ19〉
−1140 〈λ−4λ5λ11λ19〉

The relationship between r4(H/K) and c4(H/K) has an interesting ex-
pression in terms of the rank of the Rédei matrix of K, which we describe
briefly below. For more details and proofs, see Rédei [39].

Definition 3.3.26. For 1 ≤ i, j ≤ t let

ai,i :=
(
DK/p

∗
i

pi

)
and

ai,j :=
(
p∗j
pi

)
, i 6= j.

and let MK := (mi,j) be the matrix in Mt(F2) with entries satisfying

ai,j = (−1)mi,j .

We call MK the Rédei matrix of K.

Quadratic reciprocity ensures that every row and column of MK sums
to zero (in F2). If d is a positive discriminant dividing DK such that (3.20)
has a rational solution then the sum of the row vectors∑

i:pi|d

(mi,j)1≤j≤t = ~0, (3.22)

where ~0 is the all-zero vector in Ft2, and conversely if d is a discriminant
satisfying (3.22) then (3.20) has a rational solution. Moreover, if there exists
a subset J of {1, . . . , t} such that the sum of the column vectors∑

j∈J

(mi,j)1≤i≤t = ~0

then setting
d1 =

∏
j∈J

p∗j , d2 = DK/d1,

we see that (d1, d2) is a decomposition ofDK as defined in Definition 3.3.17,
and conversely that every decomposition ofDK has this property. It follows
that the rank of MK is t− 1− r4(H/K).
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Gerth [12] described the distribution of r4(H/K) by counting the num-
ber of matrices in Mt(F2) which occur as Rédei matrices of quadratic fields,
and estimating the number of fields K with DK below a given bound which
correspond to each matrix.

Definition 3.3.27. Suppose that K is an imaginary quadratic field. Let t
be the number of prime divisors of DK and let dK = DK if D is odd and
DK/4 otherwise. We define

At;B := {K : dK ≥ B},
At,r;B := {K : K ∈ At;B and r4(K) = r},

at,r := lim
B→∞

|At,r;B|
|At;B|

,

a∞,r := lim
t→∞

at,r.

Let ηk(s) :=
∏k

j=1(1− s−j).

Theorem 3.3.28 (Gerth [12]). The limits at,r exist and in particular

a∞,r = 2−r
2

η∞(2)ηr(2)
−2.

The sequence {at,0}n≥1 is a monotonic sequence with limit a∞,0 > 0.288,
and for any t > 0,

at,0 + at,1 + at,2 > 0.99.

If K is real quadratic, then with the corresponding definitions replacing
a (resp. A) with b (resp. B) Gerth found similar results including that

b∞,r = 2−r(r+1)η∞(2)ηr(2)
−1ηr+1(2)

−1,
b∞,0> 0.577

and for any t > 0
bt,0 + bt,1 + bt,2 > 0.997.

In [9] Fouvry and Klüners proved that the density of negative and pos-
itive fundamental discriminants DK such that r4(H/K) = r are equal to
a∞,r and b∞,r respectively.



CHAPTER 4

Q-Curves with Complex Multiplication

In this chapter we apply the theory developed in the preceding chapters
to CM elliptic curves with endomorphism algebra K, in particular to K
and Q-curves. In the first section we describe the Grössencharacters of
K-curves of type 1 in terms of the quadratic characters of UK defined in
Section 2.2.3. Since every Q-curve E/HO is the quadratic twist of a Q-
curve of type 1 by a strictly admissible extension ofHO, we may then apply
the results of Section 3.3 to obtain a set Γ of Q-curves with good reduction
outside DK and the property that if A/HO is a Q-curve then there exists
an elliptic curve E in Γ such that χEχ−1

A = κ ◦ NH/Q for some quadratic
Dirichlet character κ of IQ.

In Section 4.2 we outline some of the properties of the L-series attached
to a Hecke character χ, with particular attention to the case where χ is
the Grössencharacter of an elliptic curve E. The conjecture of Birch and
Swinnerton-Dyer connects the Mordell-Weil rank of an elliptic curve E
with the value of the L-series of E at s = 1. For a certain class of K-curves
of type 1, which we introduce in Section 4.2.1, this conjecture is known to
be true. Such curves are termed canonical.

Having described the Grössencharacters of some special classes of el-
liptic curves, it is natural to ask whether we can also find explicit models for
them. The relationship between Grössencharacter and model has been stud-
ied by several people, notably Weil [64], Gross [16, 17], Rumely [46, 47]
and Rubin and Silverberg [45] who have recently found models for canoni-
cal elliptic curves. In theory, one can always find a model for a curve with a
given Grössencharacter by brute force: take any curve with CM by the de-
sired order and twist until the L-series agree. In Section 4.3.1 we describe
an interesting shortcut. Suppose that E/F is a CM elliptic curve which has
at least one 3-torsion point P = (x(P ), y(P )) with x(P ) defined over F .
We shall see that the quadratic twist of E by y(P )2 is a K-curve of type 1
with good reduction at all primes of F coprime to 3.

In Section 4.4 we prove that there exists a CM elliptic curve with good
reduction everywhere over H if and only if the discriminant DK of K is
divisible by at least two primes congruent to 3 mod 4, and that in this case
there exists a Q-curve with this property.

65
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4.1. Q-Curves

Let K/Q be an imaginary quadratic field with discriminant DK and let
O be an order of K. We saw in Proposition 1.1.15 that the subgroup

NO := NHO/K(IHO/H
∗
O)

of IK/K
∗ is UOK∗∞K

∗.

Proposition 4.1.1 (Shimura [55] Proposition 8). If ϕ is a Hecke character
of IK then ϕ ◦ NHO/K is the Grössencharacter of an elliptic curve E/HO
with CM by O if and only if

a) ϕ(u)2 = 1 for all u ∈ UO and
b) ϕ(y) = y−1 for all y ∈ K∗∞,

and the restriction of ϕ to UO determines χE up to choice of infinite prime
of HO.

From now on we suppose that a choice of infinite prime has been made.
Note that this choice is equivalent to the choice of infinite prime defining
f∞ in Definition 2.3.4.

Let E be a K-curve of type 1, let χE := ϕ ◦ NHO/K and let λ be the
restriction of ϕ to UO. By Proposition 4.1.1, λ is an odd quadratic character
of UO. Conversely, suppose that λ is an odd quadratic character of UO. We
can extend λ to a homomorphism ϕλ from NO to C∗ by setting

ϕλ(K
∗) = 1 and ϕλ(x) = x−1 for all x ∈ K∗∞.

Proposition 4.1.2. We can extend ϕλ to a Hecke character ϕ of IK , and
χ := ϕ ◦ NHO/K is the Grössencharacter of a K-curve of type 1 with CM
by O.

Proof. This is a special case of Theorem 11 of Shimura [55]. �

By Proposition 4.1.1 the extension of ϕλ is unique up to choice of infi-
nite prime of HO. For any idele α = α(a) where a = (a) is a principal
ideal coprime to fλ,

ϕ(α) = λ(a)a. (4.1)

Proposition 4.1.3 (Shimura [55] Proposition 9). The following are equiva-
lent:

a) χE(αρ) = χE(α)ρ for all α in IHO ,
b) ϕ(αρ) = ϕ(α)ρ for all α in NO,
c) λ(αρ) = λ(α)ρ for all α in UO.

Note that condition a) is precisely the condition for a K-curve of type 1
to be a Q-curve. Condition c) is a necessary but not a sufficient condition
for ϕ to be real on all of IK . A description of when the latter occurs will
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be given in Proposition 4.2.11. In particular, condition c) ensures that if a
and α are as in (4.1) then λ(αρ) = λ(α)ρ, but if a is not principal then this
need not hold. We shall see several examples of this in Section 5.3.

Let p be an odd rational prime dividing DK and let p be the prime of K
dividing p. In Section 2.2.3, we defined a real quadratic character λp of UK
by

λp(x) :=

(
x̄

p

)
(4.2)

where x̄ denotes the image of x in Kp. By Lemma 2.2.15 and Proposition
2.2.17, λp is odd if and only if p ≡ 3 mod 4 and there exists a real, odd
character λ−8 of UK ramified only over 2, if and only if DK = −8d for
some integer d ≡ 1 mod 4.

Definition 4.1.4. Let E and E ′ be elliptic curves defined over F with CM
by an order O of K, and let k be a subfield of F . We say that E and E ′ are
k-equivalent if there exists a Dirichlet character η of Ik such that

χE′χ
−1
E = η ◦ NF/k.

As in Section 2.2.3 we let GK be the group of quadratic characters of
UK generated by the characters λs where s runs through the set of integers
appearing in a decomposition of DK into a product of prime discriminants
(see Proposition 2.2.2), and let G−K be the subset of odd characters in GK .
We recall that if s is either an odd prime or a prime discriminant divisible
by 2 then

κs := ηs ◦ NK/Q.

We shall say that K is exceptional if DK is divisible neither by 8 nor by
any prime p ≡ 3 mod 4. By Corollary 2.2.18 if DK is divisible by t distinct
primes then

|G−K | =
{

0 if K is exceptional, and
2t−1 otherwise.

Definition 4.1.5. Let Γ1(K) denote the set of Hecke characters χ of IH
such that χ is a Grössencharacter of a K-curve of type 1 with CM by OK

and
χ = ϕ ◦ NH/K , and ϕ|UK

= λ,

for some element λ of G−K .

Proposition 4.1.6. Every Q-curve E/H of type 1 with CM by OK is Q-
equivalent to an elliptic curve with CM by OK and Grössencharacter in
Γ1(K). Conversely, if E/H and E ′/H are elliptic curves with CM by OK

and Grössencharacters in Γ1(K) then E is Q-equivalent to E ′ if and only
if χ and χ′ correspond to the same element of G−K .
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Proof. Let E be a Q-curve of type 1, let µ be the real, odd quadratic char-
acter of UK which determines χE and let N := NF/Q(fµ). Define T0 to be
the set of primes dividing N which are coprime to DK and T1 to be the set
of primes dividing both N and DK . Then µ = µ0µ1 where

µ0 =
∏
p∈T0

µp and µ1 =
∏
p∈T1

µp.

By Corollary 2.2.10 and Lemmas 2.2.12 and 2.2.14, µ0 is a real even char-
acter of the form ν ◦ NK/Q for some quadratic character ν of IQ. But then
µ1 is a real odd quadratic character of UK . Moreover, by Corollary 2.2.10
if every prime in T1 divides an odd rational prime then µ1 =

∏
p∈T1

λp and
hence determines some element χ of Γ1(K).

If T1 contains a prime p of K dividing 2 then either µp = λp or µp =
κs ·λp where s ∈ {−8,−4, 8} is as determined in Lemma 2.2.15. Therefore
either µ1 or κ−1

s µ1 determine some element χ of Γ1(K) and χ and χE are
Q-equivalent.

To prove the converse, notice that χE′χ−1
E = φ ◦ NH/K where φ is a

Dirichlet character of IK and φ|UK
is an element of G+

K . Now by construc-
tion, (see Section 2.2.3), no λs with s dividing DK has the form ηs ◦ NK/Q
where κ is a character of UQ, hence if E and E ′ are Q-equivalent then φ
must be the trivial character on IK . �

We saw in the proof of the last proposition that Γ1(K) corresponds to
either all or half of the set of Grössencharacters of Q-curves of type 1 with
good reduction outside primes dividing DK according to whether DK is
odd or even.

We next consider Q-curves of type 2. With our usual assumption that
DK < −4, if E/H is a Q-curve of type 2 then there exists a quadratic
extension L/H such that L/Q is normal andEL is a Q-curve of type 1. This
allows us to use results from Chapter 3 to classify Q-equivalence classes
of Q-curves of type 2 in a similar manner to those of type 1. Let L :=
{L1, . . . , Lm} be a minimal set of elements of GsH/K such that

GsH/K = 〈As
H/K ,L〉.

Recall that m =
(
n
2

)
by (3.16) and that by Lemma 3.3.3 and Corollary 3.3.7

we may suppose for 1 ≤ i ≤ m that Li = FiH where Fi/K is a dihedral
extension of order 8, unramified outside DK .

Definition 4.1.7. Let L and m be as above and for 1 ≤ i ≤ m let φi be the
Dirichlet character associated with the extension Li/H . For any non-empty
subset J of 1, . . . ,m let φJ :=

∏
j∈J φj . We define Γ2(K) to be the set of

Hecke characters of the form φJχ1 with χ1 ∈ Γ1.
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Proposition 4.1.8. Every Q-curve E/H of type 2 with CM by OK is Q-
equivalent to an elliptic curve with Grössencharacter χE = φLχ1 where χ1

is in Γ1(K) and φL is the Dirichlet character of a quadratic extension L/H
which is normal over Q and unramified outside primes dividing DK .

Proof. Let χ1 be any element of Γ1 and let φ := χEχ
−1
1 . Both χ and χE

are fixed by Gal(H/Q) so by Lemma 2.3.5, φ is the Dirichlet character
associated with a quadratic extension of L′/H which is normal over Q. By
Corollary 3.3.7, there exists a field L/H unramified outside primes dividing
DK such that φ = (ν ◦ NH/Q)φL for some Dirichlet character ν of IQ.
Therefore χE is Q-equivalent to φLχ1 as claimed. �

Corollary 4.1.9. Every Q-curve E/H of type 2 is Q-equivalent to an ellip-
tic curve with Grössencharacter in Γ2.

Remark 4.1.10. The content of Propositions 4.1.6 and 4.1.8 is essentially
that of Theorem 2 of Nakamura [34].

4.1.1. Q-Curves with CM by Non-Maximal Orders. We now con-
sider Q-curves with CM by a non-maximal order O of K. Let f be the
conductor of O, DO := f 2DK its discriminant and HO its ring class field.

Proposition 4.1.11. Let E be a Q-curve with complex multiplication by O
defined over HO. Then there exists an elliptic curve Em with CM by OK

such that E and Em are isogenous over HO. Moreover, if E is a Q-curve of
type 1 over HO then Em is a K-curve of type 1 over H .

Proof. Suppose that E/HO is a Q-curve of type 1, so that χE = ϕ◦NHO/K

for some Hecke character ϕ of IK . Then by Proposition 4.1.1, ϕ is deter-
mined up to choice of infinite place of HO by a real odd quadratic character
of UO. But sinceH is contained inHO, UO is contained in UK and ϕ◦NH/K

is the Grössencharacter of a K-curve with CM by OK over H .
If E/HO is type 2, then it is the quadratic twist of a type 1 curve E0

by some quadratic extension L/HO. If A/H is the curve with complex
multiplication byOK which becomes isogenous to E0 over HO then clearly
Em := ALHO is isogenous to E over HO and since it has CM by OK it has a
model defined over H . �

Remark 4.1.12. By Proposition 4.1.3, Em will be a Q-curve if and only if
ϕ is real on NOK

. This will not be true, for example, if E has bad reduction
at any odd prime p which divides f but is coprime to DK .

Corollary 4.1.13. Suppose that E and E ′ are Q-curves with CM by O
defined over HO and that E and E ′ are not isogenous over HO. Let L be
the quadratic extension of HO such that E and E ′ are L-isogenous. Then L
is an absolutely normal field and there exists a quadratic extension Lm/H
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such that L = LmHO. Moreover if E and E ′ are of type 1, then L/K and
Lm/K are abelian.

Proof. Recall that the Hecke character φL associated with the extension
L/HO satisfies

φL = χE′χ
−1
E .

SinceE andE ′ are Q-curves, χE and χE′ are fixed by Gal(HO/Q), so L/Q
is normal. The existence of Lm follows from Proposition 4.1.11. If E and
E ′ are of type 1 then there exist Hecke characters ϕ and ϕ′ of IK such that
χE = ϕ ◦ NHO/K and χE′ = ϕ′ ◦ NHO/K . Therefore L/K is abelian, and
since L = LmHO it follows that Lm/K is also abelian. �

Proposition 4.1.14. Let O be an order of K with discriminant D and let µ
be the integer defined in Definition 2.2.6. Then if D is divisible by 8 or by
some prime p ≡ 3 mod 4 there are 2µ−1 distinct Q-equivalence classes of
Q-curves of type 1 with CM by O defined over HO and none otherwise.

Proof. The only possibility which is not in direct analogy with the case
when O is maximal is if DO is divisible by 32. Suppose that this is so and
let p be the prime of O dividing 2. If DK is even set s := 2∗ and let ν be
the character defined in Lemma 2.2.15. Since HO contains Q(

√
−1,

√
2)

the character κs is trivial on Up for all s in {−8,−4, 8}, so the restriction
of ν to Up is real, and the character group of Up is generated by ν and λs,
precisely one of which is odd.

If DK is odd then we achieve the same result by considering first the
suborder O′ of OK of conductor f/4 and then treating O as a suborder of
O′ in the same manner as above. �

Extending our previous definition, we say that O is exceptional if DO is
divisible neither by 8 nor by any prime congruent to 3 mod 4.

Lemma 4.1.15 (Nakamura [34] Proposition 5). If O is exceptional, then
there are no Q-curves defined over HO with CM by O.

Proof. By Proposition 4.1.14 there are no such curves of K-type 1. Sup-
pose there exists a Q-curve E/HO of K-type 2 with Grössencharacter χ.
Let E0 be a K-curve of type 1 with Grössencharacter χ0. Set φ := χ0χ

−1

and let L be the quadratic extension of HO associated with φ. By Corol-
lary 3.3.11 there exists an extension L′/HO such that L′/Q is normal and
εL∗ = εL′∗ so the field L′′ := L ◦ L′ is an abelian extension of K. But then
the curveE1 := EL′′

0 is a Q-curve ofK-type 1 which is a contradiction. �

Example 4.1.16. Suppose that K is exceptional, and let φK be a real, even
character of IK . Then there exists a type 1 curve E defined over H with
CM by OK such that

χE = ν · φK ◦ NH/K ,
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where ν is the character defined in Lemma 2.2.15, and E and Eρ become
isogenous over the extension ofH corresponding to the character κ8◦NH/K .
This is the ring class field of K of conductor 2.

4.2. The L-series and the Functional Equation

In this section we outline some of the properties of theL-series of Hecke
characters. Proofs and details of the material covered may be found in
Chapter 7 of Weil [66] and the same chapter of Lang [25].

Throughout this section we let χ be a Hecke character of IF with min-
imal exceptional set S. We recall from Definition 2.1.3 that the Hecke L-
series of χ is defined as

LF (χ, s) :=
∏
p6∈S

(
1− χ(p)

NF/Q(p)s

)−1

. (4.3)

If χ is a Dirichlet character then LF (χ, s) converges for <(s) > 1.

Theorem 4.2.1 (Hecke [21]). The Hecke L-series of χ has an analytic con-
tinuation to the whole complex plane.

The first proof of this theorem in idelic language was given in Tate’s
thesis, reprinted in [62].

Definition 4.2.2. Let p be a place of F . For any x in Fp we define

|x|p := N
−v(x)
p if p is finite,

|x|p := |x|, if Fp = R,
|x|p := |x|2, if Fp = C,

where if p is finite v is the additive valuation on Fp andNp is the cardinality
of the residue class field F p.

Definition 4.2.3. The idele volume ‖α‖F of an idele α of F is

‖α‖F :=
∏

p

|αp|p.

Definition 4.2.4. For any complex number t we define ωt to be the Hecke
character of IF given by

ωt(α) := ‖α‖tF . (4.4)

Let χ be a Hecke character of IF . We define χun to be the ordinary
Hecke character with conductor fχ given by

χun(α) :=
χ(α)

|χ(α)|
for all α ∈ IF .
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Lemma 4.2.5 (Weil [66] p. 118). For any Hecke character χ of IF there
exists a unique element t of C such that

χ = χunωt.

Lemma 4.2.6 (Lang [25] p. 94). Let ψ be an ordinary Hecke character of
IF and let p be an infinite place of F . For any idele α in IF the local
component of ψ is given by

ψp(α) := αap|αp|ib−a

for some integer a and real number b.

If ψ has discrete infinite components then if p is complex then a = b = 0
and if p is real then b = 0 and a is either 0 or 1.

With definitions as in Lemma 4.2.6, set np := 1 if p is real and np := 2
otherwise, and define

u(ψ, p, s) :=
nps+ ib+ |a|

2
. (4.5)

For any Hecke character χ of IF we define

dχ := NF/Q(fχ) · |DF/Q|. (4.6)

Let ψ be an ordinary Hecke character. Setting u := u(ψ, p, s), r1 to be
the number of real places in S0 and n := [F : Q] we define

Λ(ψ, s) := (2r1(2π)−ndψ)s/2

(∏
p∈S0

Γ(u)

)
LF (χ, s), (4.7)

where
Γ(s) =

∫ ∞
0

e−uus−1du.

Proposition 4.2.7 (Weil [66] pp. 133–134). For any Hecke character χ of
IF ,

LF (χ, s) = LF (χun, s+ t).

Proposition 4.2.8. If ψ is an ordinary Hecke character of IF then Λ(ψ, s)
satisfies a functional equation

Λ(ψ, s) = W (ψ)Λ(ψ, 1− s). (4.8)

where W (ψ) is a complex number of absolute value 1.

Proof. For proof, and the definition of W (ψ), see Lang [25] p. 114. �

For general Hecke characters one may obtain a functional equation of
a similar form by applying Proposition 4.2.7. In the following example we
let K be an imaginary quadratic field, take χ to be a Hecke character of IK
such that χE := χ ◦ NH/K is the Grössencharacter of an elliptic curve, and
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derive the functional equation of L(χ, s) in the form commonly found in
the literature.

Example 4.2.9. Let K be an imaginary quadratic field with Hilbert class
field H and suppose that E/H is a CM elliptic curve such that

χE := χ ◦ NH/K .

By Proposition 4.1.1, if p = (a) is a principal prime ideal coprime to the
conductor of E then χ(α(p)) = ±a, and if x ∈ K∗∞ then χ(x) = x−1.
Now, with the natural embedding of K in C

ω1(α(p)) = NK/Q(a)−1 = |a|−2 = |χ(α(p))|−2

and similarly, letting ∞ denote the infinite place of K,

ω1(x) = |x∞|2.

Therefore χ = χunω−1/2. The infinite component of χun maps an idele α to
α∞/|α∞| so u(χun,∞, s) = s+ 1/2 and by (4.7),

Λ(χun, s) = (2π)−sds/2χ Γ(s+ 1/2)LH(χun, s).

It follows from Proposition 4.2.7 that LH(χun, s − 1/2) = LH(χ, s) and
LH(χun, 3/2− s) = LH(χ, 2− s), hence if we define

Λ(χ, s) := (2π)−sds/2χ Γ(s)LH(χ, s),

and set W (χ) := W (χun) then Λ(χ, s) satisfies the functional equation

Λ(χ, s) = W (χ)Λ(χ, 2− s).

For the elliptic curve E in the above example, it is clear that L(E/H, s)
satisfies a functional equation with symmetry between s and 2− s. Indeed,
applying Theorem 2.3.18 we find:

Proposition 4.2.10. Let K be an imaginary quadratic field, let O be an
order of K and let F be a field containing HO. For an elliptic curve E/F
with CM by O and Grössencharacter χ := χE let n := [F : Q] and define

Λ(E/F, s) := ((2π)−ndχ)
sΓ(s)nL(E/F, s).

Then
Λ(E/F, s) = Λ(E/F, 2− s).

For the case where F does not contain K, see Silverman [59] p. 176.
It is conjectured that theL-series of any abelian variety has similar prop-

erties of analytic continuation and functional equation.
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4.2.1. Canonical Hecke Characters. Let k be a CM field with max-
imal real subfield k0, and let ρ be a generator of Gal(k/k0). Recall that a
Hecke character χ of k is real if χ(α)ρ = χ(αρ) for all ideles α of k. In
Section 4.1 we constructed Hecke characters χ of IK by extension of real
quadratic characters λ of UK . In this section, following Rohrlich [41], we
investigate when χ itself is real.

Let E/F be an elliptic curve and let rM be the Mordell-Weil rank of
E/F . Birch and Swinnerton-Dyer famously conjectured that L(E/F, s)
has a zero of order rM at s = 1. It has been proved (see Rubin [44]), that if
E is a K-curve of type 1 with CM and F is an abelian extension of K then
if E(F ) is infinite L(E/F, 1) = 0.

If E/H is a Q-curve of type 1 with CM by OK and Grössencharacter
χE := χ ◦ NH/K such that χ is real then by Lemma 6.2 of Miller and
Yang [28] the order of the zero at s = 1 agrees with the conjecture of Birch
and Swinnerton-Dyer. The functional equation of Λ(χ, s) has a particularly
simple form in this case as W (χ) is ±1, and it is known that the Mordell-
Weil rank of E is 0 ifW (χ) = 1 and 2hK ifW (χ) = −1. If χ is unramified
outside primes dividingDK then Proposition 4.2.14 describes when each of
these cases occurs.

Proposition 4.2.11 (Rohrlich [41] Proposition 1). Let k be a CM field with
maximal real subfield k0. Let χ be a Hecke character of k and let κ be the
character associated with the extension k/k0. Then χ is real if and only if
the restriction of χun to the idele group of k0 is equal to κ.

If in addition χ is unramified outside primes dividing Dk/k0 then χ is
termed a canonical character. An elliptic curve E is canonical if χE =
χ◦NHK/K for some canonical character χ of IK . We note that the condition
on the discriminant means that it is sufficient to consider curves with CM
by the maximal order.

Proposition 4.2.12 (Rohrlich [41] Propositions 3, 4, 5). Let K be an imag-
inary quadratic field, and let nK denote the number of ordinary canonical
characters of IK . Then

nK =

 0 if DK ≡ 4 mod 8,
1 if DK is odd,
2 if DK ≡ 0 mod 8.

Proof. For any odd prime p, the character λp is the unique extension of
ηp from IQ to IK , which gives us the result if DK is odd. There is no
continuous extension of η−4 to IK , since λ−4 is even, and κ−8 is trivial on
IQ. Finally, there are two extensions of ηs to IK for s in {±8} since λ−8

and κ8λ−8 extend η−8 and λ8 and κ−4λ8 extend η8. �
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Remark 4.2.13. Propositions 3–5 of Rohrlich [41] prove an equivalent re-
sult to Proposition 4.2.12 for a considerably more general class of CM
fields. Suppose that k is a CM field of degree 2g over Q with maximal
real subfield k0 such that all units of k are real, and if an ideal a of k0 is
principal in k then it is principal in k0. Then if k/k0 is unramified over 2,
nk = 1 and otherwise nk is either 0, 2g or 2g+1 depending upon the local
structure of k/k0.

We say that a Q-curve E/H is canonical if its Grössencharacter has the
form χE := χ ◦ NH/K where χ is a canonical Hecke character of IK .

If DK is divisible by 8, then any two elliptic curves corresponding to
distinct canonical Hecke characters on IK are Q-equivalent, so there is one
canonical elliptic curve with Grössencharacter in Γ1(K) if DK is odd or
divisible by 8 and otherwise there are none.

Proposition 4.2.14 (Montgomery and Rohrlich [30]). Suppose thatK is an
imaginary quadratic field with discriminant DK which is odd or divisible
by 8, let χ be a canonical character of IK and let λ be the restriction of χun

to UK . Then

W (χ) =

{ (
2
−DK

)
if DK is odd,

λ(1 +
√
dK) if DK = 4dK , dK ∈ Z.

Example 4.2.15. This example is due to Gross [16]. Let DK = −p where
p ≡ 3 mod 4 is an odd prime, and let E/H be the elliptic curve with
Grössencharacter χ ◦ NH/K where χ is determined by λp. Then χ is real
and W (χ) = 1 if and only if p ≡ 7 mod 8.

Example 4.2.16. We look at the Mordell-Weil groups of the Q-curves over
HK with Grössencharacters in Γ1(K) for DK = −15 and −35. The canon-
ical character χ of IK has W (χ) = 1 in the first case and -1 in the second.

DK λ E(H)
−15 λ3 Z/2Z× Z/6Z

λ3λ5 Z/2Z× Z/2Z
−35 λ7 0

λ5λ7 Z4

There are two primes p, pρ dividing 3 in K := Q(
√
−35) and the Mordell-

Weil group of the K-curve corresponding to λp is Z/3Z.

Remark 4.2.17. The Hecke character χ is the Grössencharacter of an abelian
variety A/K of dimension hK . We shall see in Chapter 5 that A is the Weil
restriction from H to K of E, with E defined as above, and shall also see
that End0

Q(A) is real.
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4.3. Models of Q-Curves

In Chapter 2 we saw that knowledge of the Grössencharacter of an
abelian variety of CM type tells us a great deal about the arithmetic prop-
erties of the variety, hence, given a variety A of CM type it is natural to
attempt to determine its Grössencharacter. Conversely, given a CM type
(K,Φ) with reflex (K ′,Φ′) and a Hecke character χ satisfying Theorem 2.3.9
for some lattice Λ of K and finite extension F/K ′, one may wish to find an
explicit description of an abelian variety A/F with Grössencharacter χ.

The first question has been studied by Weil [64] for families of elliptic
curves with models of the form

y2 = axn + b, 3 ≤ n ≤ 4 and a, b ∈ Z,

and more generally by Rumely [47, 46] for abelian varieties with complex
multiplication belonging to families of abelian varieties parametrized by
arithmetic theta-functions. To give a flavour of these results we describe
an example of a special case corresponding to a family of elliptic curves,
known as Hesse curves, drawn from Rumely [47] pp. 394–395. Let H be
the complex upper half-plane, and let K := Q(τ) for some CM point τ in
H. Let j := j(τ) be the j-invariant of a curve with complex multiplication
by OK and let µ := µ(τ) satisfy

j =
27µ3(µ3 + 2)3

(µ3 − 1)3
.

The elliptic curve E with model given by

x3 + y3 + 1 = 3µxy

is defined over F := K(µ) and has CM byOK . We can express any element
a ofK uniquely in the form a = a1 +a2τ with a1 and a2 ∈ Q. In particular,
suppose that τ 2 = t1 +t2τ . We define fτ to be the embeddingK ↪→ M2(Q)
given by

fτ (a) =

(
a1 + a2t2 a2t1

a2 a1

)
.

This embedding has the property that

fτ (a)

(
τ

1

)
=

(
aτ

a

)
.

We denote by the same symbol the extension of fτ to an embedding of IK
into GA := GL2(A)+ where A is the adele group of Q and the subscript
indicates that the infinite part of any matrix in GA has positive determi-
nant. Let GL2(R)+ be the subgroup of matrices in GL2(R) with positive



4.3. MODELS OF Q-CURVES 77

determinant and define

G := GL2(R)+ ×
∏
p

GL2(Zp).

For an element g of G let gp denote the component of g in GL2(Zp), and
define

GE := {g ∈ G : g3 ≡
(
±1 0
0 1

)
mod 3}.

In this case, Theorem 2 of Rumely [47] tells us that
a) F := K(µ) is the class field of K corresponding to K∗f−1

τ (GE).
b) For any α in IF there is a unique decomposition NF/K(α) = aαβ

with aα in K∗ and β in f−1
τ (GE).

c) The Grössencharacter of E is defined by

χE(α) = β−1
∞ .

Example 4.3.1 (Rumely [47] Example 3(d)). Let τ = (4 +
√
−2)/3. Then

DK = −8, j = 8000 and µ = (−2 +
√
−2)/3 so that

E : x3 + y3 + 1 = (−2 +
√
−2)xy

is defined over K = HK . The conductor of χE is p = (1 +
√
−2), one of

the two primes of K dividing 3. We shall see another description of χE in
Section 4.3.1.

The curves constructed in this way are clearly K-curves, but for the
families described in detail by Rumely, it is rare that the models in question
are defined over K(j).

If γ2(τ) and γ3(τ) are the modular functions, known as Weber functions,
satisfying

γ3
2(τ) = j(τ),

γ2
3(τ) = j(τ)− 1728,

and m is an element of C∗ then the curves

E(τ,m) : y2 = x3 −m2γ2(τ)

48
x+m3γ3(τ)

864
(4.9)

have j-invariant j(τ) and Grössencharacters which may be determined in a
manner similar to those of the Hesse curves (see Theorem 1 of Rumely [46]
and Section 5 of Rubin and Silverberg [45]). The following lemma helps to
determine for which m the curves E(τ,m) will be defined over K(j(τ)).

Lemma 4.3.2 (Rubin-Silverberg [45] Lemma 3.4). Let O be the order of
K associated with the j-invariant j(τ). Then
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a) If DO is odd then γ3(τ) and γ2(τ)
√
DO are defined over K(j(τ)).

b) If DO ≡ 4, 8 mod 16 then iγ3(τ) and γ2(τ)
√
−DO/4 are defined

over K(j(τ)).

For the fields K = Q(
√
−p) where there is only one Q-equivalence

class of Q-curves, Gross has given a systematic answer to the problem of
finding minimal models for Q-curves in each Q-equivalence class over H .

Proposition 4.3.3 (Gross [16] Chapter 5 and [17]). Let p ≡ 3 mod 4 be a
prime and let K = Q(

√
−p). Let j be the j-invariant of a curve with CM

by OK and define

f2(x) = x3 − j, f3(x) = −px2 + (1728− j).

Then f2 has a unique zero, a2 in H , and f3 splits in H , with zeroes ±a3,
where we choose the sign of a3 by requiring that a3 ·

(
2
p

)
> 0. The elliptic

curve

A(p) : y2 = x3 +
a2p

48
x− a3p

2

864
, (4.10)

has j-invariant j, discriminant ∆ = −p3 over Q(j), and is a Q-curve. The
Grössencharacter of A(p) over HK has conductor p.

Rubin and Silverberg [45] Section 7, have generalized Gross’ construc-
tion to find a model over Q(jE) for canonical Q-curves. When DK is odd
one has, setting m :=

√
DKγ

4
2 in (4.9)

E : y2 = x3 − DKj
3
E

48
x+

DK

√
DKγ3j

4
E

864
, (4.11)

where γ2
3 = jE − 1728. When DK ≡ 0 mod 8 then setting dK := −DK/4

and m := ±
√
dKγ

4
2 , the two canonical curves have models

E : y2 = x3 − dKj
3
E

48
x± dK

√
dKγ3j

4
E

864
. (4.12)

For general orders O we may attempt to find a curve with a given
Grössencharacter χ computationally by taking a standard model of a curve
E/HO with j-invariant jE , for example

y2 = x3 − 27jEx

jE − 1728
x+

54jE
jE − 1728

, (4.13)

(the default Weierstrass model in Magma for DO < −4), calculating its
conductor, and finding m ∈ HO such that

fEm = f2χ,

and, if there exist unramified quadratic extensions of HO, verify by eval-
uating L-series coefficients of χ and the possible curves E ′ until a unique
match is found. The main disadvantage of this method is that it involves
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calculating the conductor of an elliptic curve which is computationally ex-
pensive, because it involves finding a p-minimal model for every prime di-
viding the discriminant of E (see Remark 4.3.10). Finding m also becomes
more difficult when the conductor of E0 is not principal. If 3 is either split
or ramified in O, then there is an alternative method based on the 3-torsion
points of E which we describe below.

4.3.1. Three-Torsion Points. Let O be an order of an imaginary qua-
dratic field K with ring class field HO, and let E be an elliptic curve with
CM by O. The 3-division polynomial f3 of E has degree 4, is irreducible
over HO if and only if 3 is inert in O and has either one or two roots in HO
depending on whether 3 ramifies or splits in O. If DO is divisible by 3 then
f3 has a root in Q(jE).

Proposition 4.3.4. Suppose that 3 either ramifies or splits in O, let P =
(x(P ), y(P )) be an element ofE[3] with x(P ) inHO and letL = HO(y(P )).
ThenEL is an elliptic curve with bad reduction only at primes ofH dividing
3.

Proof. As usual, we are assumingDK 6= −3,−4. Let S be the set of primes
of HO, coprime to 3, at which E has bad reduction, and let p be an element
of S. The image of the inertia groupG(p) under the 3-adic representation is
{±1} by Theorem 6(b) of Serre-Tate [51], and hence becomes trivial over
a quadratic extension of HO. Now the action of G(p) on P becomes trivial
over L, so by Proposition 1.3.14, EL has good reduction at p, for all p in
S. �

Lemma 4.3.5. Suppose that 3 either ramifies or splits in O. Let E and E0

be CM curves defined over HO, such that jE = jE0 and let P0 be a point of
E0[3] with x-coordinate x(P0) in HO, and let L0 = H(y(P0)). Then there
exists a point P of E[3] such that

EL0
0 ' EL,

where L = HO(y(P )).

Proof. Let k be the quadratic extension ofHO over whichE andE0 become
isogenous, and let P be the 3-torsion point of E with the property that
Ey(P )2 is k-isogenous to EL0

0 . By the definition of the quadratic twist,

L = HO(y(P )) = k ◦HO(y(P0)) = k ◦ L0

so the isogeny is defined over HO. �

Remark 4.3.6. Let L and L′ be quadratic extensions of F with Dirichlet
characters φ and φ′ respectively. Recall that in Definition 3.1.3 we defined
L′′ := L ◦ L′′ to be the quadratic extension of F corresponding to the char-
acter φφ′ of IF .
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Proposition 4.3.7. Let E and L be as in Proposition 4.3.4. Then EL is a
K-curve of type 1.

Proof. Suppose that E is a K-curve of type 1. Then L/K is abelian by
Theorem 2.3.12, hence by Corollary 2.3.13, EL is also of type 1. Since
there exists a K-curve E0 of type 1 over HO for any imaginary quadratic
field K, the result follows from Lemma 4.3.5 for any curve E/H with CM
by O. �

If O = OK and DK is divisible by 3, then the curve EL is the Q-curve
determined by the character λ3 defined in Proposition 2.2.17. If 3 splits
into primes p, pρ of K then the twists of E by the 3-torsion points P1, P2

with x(Pi) in H correspond to the K-curves determined by the quadratic
characters λp, λ

ρ
p defined in (2.12). These curves become isogenous over

H(
√
−3).

Example 4.3.8. Let K = Q(
√
−8). We saw in Example 4.3.1 that the

elliptic curve E/K with model x3 + y3 +1 = (−2+
√
−2)xy has Grössen-

character χE with conductor p = (1+
√

2), one of the primes ofK dividing
3. Since K = HK has class number 1, χE must correspond to λp. Taking a
random curve over K with CM by OK and twisting by a 3-division point in
the sense of Proposition 4.3.4, we find a Weierstrass model

y2 = x3 + 1/8748(50
√
−2 + 115)x+ 1/2125764(−665

√
−2 + 1022)

We could also obtain a Weierstrass model by entering the Hesse curve di-
rectly, which gives us another way to verify that the two models define the
same curve.

Example 4.3.9. Let K be the quadratic field with discriminant DK :=
−84 = −4 · 3 · 7 and let jE be the j-invariant of an elliptic curve with CM
by OK . The maximal real subfield Q(jE) of HK is F := Q(

√
3,
√

7). The
curveE/F with this j-invariant and Weierstrass model defined in (4.13) has
conductor ramified over primes dividing 2, 3, 7, 47, 53, 59 and 83. Since
DK is divisible by 3 there exists a single point P ∈ E[3] such that x(P ) is
defined over F . Twisting E by y(P )2 yields:

y2 =x3 + a1(3281187890779919j3E − 10489304505525158950948109376j2E
− 18746061174212376072348001193029632jE
+1087439222632665111814556284942024704)x
+ a2(26666036511099989741j3E − 85246010356905994966259679102528j2E
− 152348225201781406303248224167536857088jE
+8837559741070505511187853113132766724096)

where
a1 := 1/9303439104094358594371996090368, and
a2 := 1/37213756416377434377487984361472.



4.4. Q-CURVES WITH GOOD REDUCTION EVERYWHERE 81

Remark 4.3.10. To quantify our claim about the relative efficiency of this
method, we timed the calculation in Magma of the conductor of the default
curve E with j-invariant jE over either Q(jE) or K(jE), and then twisted
by a 3-torsion point. The results were as follows:

DO Cl(O) Twist Conductor
−15 = −3 · 5 C2 0.000 0.040
−195 = −3 · 5 · 13 C×2

2 0.040 0.340
−660 = −22 · 3 · 5 · 11 C×3

2 0.480 8.550
−231 = −3 · 7 · 11 C2 × C6 0.900 17.270
−495 = −32 · 5 · 11 C2 × C8 3.140 61.090
−440 = −23 · 5 · 11 C2 × C6 6.400 131.150

In the first four cases E is a curve defined over Q(jE). In the final example,
where 3 splits in OK , the 3-division polynomial does not have a root over
Q(jE), hence E is defined over K(jE), a field of degree 24.

4.4. Q-Curves with Good Reduction Everywhere

LetK be an imaginary quadratic field with discriminantDK and Hilbert
class field H . If DK < −4 it is known (see Theorem 9 of Serre-Tate [51]),
that any elliptic curve E/F with CM by an order of K attains good re-
duction everywhere over a quadratic extension of F . We would like to
know when there exists an elliptic curve E/H with CM by OK which has
good reduction at every prime of H . In this section we determine a neces-
sary and sufficient condition for the existence of a CM elliptic curve with
good reduction everywhere over H . The main result is Proposition 4.4.13
which extends results of Rohrlich [42]. Throughout this section we assume
DK < −4.

Lemma 4.4.1. Let p ≡ 3 mod 4 be a rational prime dividing DK and let
k be a quadratic field contained in H . Then there exists an even quadratic
character φ of Ik ramified only over primes of k dividing p if and only if k
is real and p divides Dk.

Proof. If p ramifies in k then λp defines an odd character of Ik which does
not become trivial on NH/k(IH), and it follows that such an L exists if and
only if k is real.

If p is inert in k then the only extension of k ramified only over p is
k(
√
−p) which is contained in H since p divides DK .

Finally if p splits in k let q and qσ be the primes of k dividing p and
let L and Lσ be the quadratic extensions of k defined by λq, λσq (with the
appropriate infinite components). Let F = k(

√
−p). Then LF = LσF and

LF/F is unramified, hence so is LH/H . �
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Proposition 4.4.2. Let p be a prime dividing DK and suppose that p is
congruent to 3 modulo 4. There exists a field L in GsH/K such that L/H is
ramified precisely at the primes ofH dividing p if and only ifDK is divisible
by at least two rational primes congruent to 3 modulo 4.

Proof. By Proposition 3.3.1 and (3.16) every field L in GsH/K which is un-
ramified outside DK may be written in the form

L = L0 ◦ L1 ◦ · · · ◦ Lm,

for some m ≤
(
n
2

)
where L0/K is abelian and for each i ≥ 1 there exist

odd prime discriminants s∗, t∗ dividing DK and a dihedral extension Fi/K
containing K(

√
s∗,
√
t∗) such that Li = FiH . Let φi be the character asso-

ciated with the extension Fi/K(
√
s∗,
√
t∗). By construction, for some d in

{t∗, s∗, t∗s∗} there exists a quadratic Dirichlet character φ of K(
√
d) such

that

φi := φ ◦ NFi/K(
√
d)

and Li/H is ramified over p if and only if φ is. As we saw in Chapter 3
that any dihedral extension of this form is Q-equivalent to one unramified
outside st, we need only consider the cases where s∗ = −p.

First, suppose that t ≡ p ≡ 3 mod 4. If
(−p
t

)
= 1 then we may suppose

that Fi is a dihedral extension of Q containing Q(
√
−p,

√
−t) and cyclic

over Q(
√
−t). Let k := Q(

√
pt). Then since the class number of k is

odd, there is a quadratic extension F/k ramified only at p and ∞i for each
of the infinite places ∞1,∞2 of k. The extension F (

√
−t) is normal over

Q and clearly belongs to the class of Fi. If
(−p
t

)
= −1 then we obtain

an extension F/k ramified over t, but by Proposition 2.2.17 there exists a
quadratic extensionA/H abelian overK ramified over pt and the extension
A◦FH is ramified only over p. (See the proof of Proposition 4.4.3 for why
this is so.)

Now suppose that p is the only prime divisor ofDK congruent to 3 mod
4. If either (

t

p

)
= 1 or

(
− p

t

)
= 1

then there exists a dihedral extension of Q containing Q(
√
t,
√
−p). But by

Lemma 4.4.1, if k = Q(
√
d) with d in {−p,−pt, t} there are no even qua-

dratic characters of Ik ramified only at infinite primes and primes dividing
p. Otherwise, p is inert in Q(

√
t) hence also in K(

√
t)/K and we may take

d = t. Any quadratic character of K(
√
t) ramified over p is lifted from K,

and we are done. �
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Proposition 4.4.3. There exists a Q-curve E/H with good reduction at
every prime of H if and only if DK is divisible by at least two primes p, q ≡
3 mod 4.

Proof. Suppose that DK is divisible by some prime p ≡ 3 mod 4 and let
E0 be the Q-curve of type 1 corresponding to the character λp. There is a
Q-curve E/H with good reduction everywhere if and only if there exists
an absolutely normal quadratic extension L/H such that E = EL

0 . Clearly
L/H is ramified only over p, so we have proved the ‘only if’ part of the
proposition for this case in Proposition 4.4.2.

If we can construct a quadratic extension L/H with character φ such
that for any prime P of H ,

φP =

{
λp ◦ NH/K if P|p,
1 otherwise,

then E = EL
0 will have good reduction everywhere over H .

Let k = Q(
√
pq). The class number of k is odd, hence any even qua-

dratic character on Uk defines a Dirichlet character of Ik.
Let ∞ denote one of the real infinite places of k, and p the prime of k

dividing p and consider the character φ′ of Ik with non-trivial local compo-
nents φ′p = λp and φ′∞ = sgn∞.

We shall demonstrate that L = L′H and φ = φ′◦NH/k have the required
properties.

First, we note that since H is a CM field, it has no real infinite places
and hence the infinite components of φ are trivial. Let q be the prime of K
dividing p, and recall that λq and λp are trivial on U (1)

q and U (1)
p respectively.

Now since H/K and H/k are unramified over p, by Serre [49] Chapter
V, Proposition 2(i), the norm maps

Nk : U
(0)
P /U

(1)
P → U

(0)
p /U

(1)
p ,

NK : U
(0)
P /U

(1)
P → U (0)

q /U (1)
q ,

correspond to the norm on the residue field extensions HP/kp and HP/Kq

respectively. But kp = Kq = Fp so the result follows.
If K is exceptional, then there are no Q-curves defined over H so the

claim is trivially true. The only remaining case is that D = −8d, where
every prime dividing d is congruent to 1 modulo 4. Let E0 be the Q-curve
of type 1 determined by λ−8. Since 2 is unramified in every real subfield of
H , the result follows in the same manner as for λp. �

Remark 4.4.4. The construction of the Grössencharacter of an elliptic curve
E/H with good reduction everywhere is equivalent to that of Rohrlich [42],
though we take a different approach.
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Example 4.4.5. Suppose that 3 and 7 ramify in K, let k = Q(
√

21) and let
p be the prime of k dividing 3. Then p is a principal ideal generated by

x =

√
21 + 3

2
,

and the extension L′ = k(
√
x) has conductor with finite part p and normal

closure k(
√
x,
√
−3).

If DK is divisible by at least two primes congruent to 3 mod 4, then the
number nG of Q-curves E/H with good reduction everywhere is equal to
the order of the subgroup of GsH/K generated by unramified extensions of
K. Conversely, Proposition 4.4.3 provides a lower bound on the 2-rank of
the class group of H . Suppose that p1, . . . , pu are distinct prime divisors of
DK such that p∗i is either −pi or −8. The pairs pi, pi+1 and pj, pj+1 with
j > i + 1 define distinct Q-curves with good reduction everywhere, hence
as a first estimate, nG ≥ bu

2
c. If we start from a fixed curve E, then we can

find another estimate as in the corollary below.

Corollary 4.4.6. Let n + 1 be the number of distinct prime divisors of DK

and let u be the number of primes p dividing DK such that p∗ < 0 and
p∗ 6= −4 and suppose that u ≥ 2. Then

nG ≥
{

2u−3 if n+ 1 = u,
2u−2 otherwise.

Proof. We note that if u is even then n+1 > u so there is no immediate con-
tradiction when u = 2. Let p and E0 be as in the proof of Proposition 4.4.3,
and let S be the set of prime divisors q of DK such that q∗ ∈ {−q,−8} and
q 6= p. Now by Proposition 4.4.3 for any q ∈ S we can construct a dihedral
extension L := Lq of K containing K(

√
−p,

√
−q) such that EL

0 has good
reduction everywhere over H , and clearly for any two primes q, q′ ∈ S
the extension Lq ◦ Lq′ is unramified over H . By Lemma 3.2.10, Lq ◦ Lq′
belongs to G(1)

F/k, and it follows from Proposition 3.3.1 and (3.16) that the
group GL := 〈Lq : q ∈ S〉 has u − 2 independent generators if u = n + 1
and u− 1 otherwise. Now precisely half of the elements of GL are unram-
ified extensions of H , and the other half are of the form L = Lq ◦ L′ with
q ∈ S and L′/H unramified, and for any such L the elliptic curve

E = EL
0 = (E

Lq

0 )L
′

clearly has good reduction everywhere. �

Proposition 4.4.7. If DK is non-exceptional and p ≡ 3 mod 4 is a rational
prime which is unramified in K/Q, there is a Q-curve with CM by OK

which has good reduction everywhere over H(
√
−p).
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Proof. Let F = H(
√
−p) and k = Q(

√
sp), where s is a positive integer

such that −s appears in the factorization of DK into prime discriminants.
The result then follows precisely as in Proposition 4.4.3 with E0 the type 1
curve ramified only over s and F in place of H . �

Example 4.4.8. Let DK = −8. Then hK = 1 and there is a single equiv-
alence class of Q-curves of type 1 defined over H = K. By the previ-
ous proposition, there exist Q-curves with good reduction everywhere over
K(
√
−p) for all primes p ≡ 3 mod 4. In particular, if p = 3 we obtain the

curve E investigated by Setzer [52] and Schoof [48]. This curve has good
reduction over k = Q(

√
6).

Using the theory of Weil restrictions developed in Chapter 5 we obtain
the following corollary to Proposition 4.4.3

Corollary 4.4.9. If DK is divisible by distinct primes p, q ≡ 3 mod 4, and
k is a subfield of H such that H/k is unramified, then there exist abelian
varieties defined over k with good reduction everywhere.

Proof. Let A be the Weil restriction from H to k of an elliptic curve E with
good reduction everywhere over H . As we shall see in Proposition 5.2.2,

fA/k = NH/k(fE/H) ·D2
H/k,

hence fA/k = 1 so A/k has good reduction everywhere. �

Lemma 4.4.10. Let K be an imaginary quadratic field and let H be the
Hilbert class field of K. Let k be a subfield of H and suppose that there
exists a k-curve E defined over H . Then if there exists an elliptic curve
E0/H with good reduction everywhere then there exists a k-curve defined
over H with good reduction everywhere.

Proof. Set χ := χE , χ0 := χE0 and let L/H be the quadratic extension
corresponding to the Dirichlet character φ := χχ−1

0 . Then fφ = fχ and the
restriction of φ to UH must be fixed by Gal(H/k). Recalling that φ must
have trivial infinite components, we must have

φ = ϕ · χ|UH

where ϕ is a character of Cl(H) (see Section 2.1.2). Now if the class group
of H is trivial then L/k is normal, hence E0 is a k-curve. But if not then
since ϕ is a quadratic Dirichlet character, ϕ · χ0 is the Grössencharacter of
a k-curve with good reduction everywhere over H . �

The question still remains as to whether there exists a CM elliptic curve
with good reduction everywhere over H if K is exceptional.
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Lemma 4.4.11. Let p ≡ 3 mod 4 be a rational prime which splits into
primes p, pρ in K and let E be the K-curve determined by λp. Let k be a
real quadratic field contained in H in which p splits. Then there does not
exist an quadratic extension L/k such that the twist of E by LH has good
reduction everywhere over H .

Proof. The analogy with the ramified case breaks down because, whereas
if p is ramified in k and K it is unramified in the extension Kk/k, if p splits
in k and K then it also splits in the extension Kk/k. In consequence, the
conductors of LH/H and E/H will differ. �

The curveE will obtain good reduction everywhere overL := H(
√
−p)

since λp is trivial on NL/K(IL).

Proposition 4.4.12. If K is exceptional then there are no elliptic curves
with good reduction everywhere over H .

Proof. Comparing Lemma 4.4.11 and the proof of Proposition 4.4.3 we see
that there are no K-curves with good reduction everywhere defined over H .
But by Lemma 4.4.10 this means that there are no elliptic curves with CM
by OK with good reduction everywhere over H . �

Proposition 4.4.13. Let K be an imaginary quadratic field and let F :=
Q(jE) where jE is the j-invariant of an elliptic curve with CM by OK . The
following are equivalent:

a) DK is divisible by at least two primes congruent to 3 mod 4.
b) The extension HK/F is unramified at every finite place of F .
c) There exists an elliptic curve E/F with CM byOK over H and with

good reduction everywhere over F .
d) There exists a Q-curve with CM by OK having good reduction ev-

erywhere over H .
e) There exists an elliptic curveE/H with CM byOK and good reduc-

tion everywhere over H .

Proof. The equivalence of a), b), c) is proved by Rohrlich in [42], and the
equivalence of a) and d) is the content of Proposition 4.4.3. The equivalence
of d) and e) is a consequence of Lemma 4.4.10 and Proposition 4.4.12. �



CHAPTER 5

Weil Restrictions and Endomorphism Algebras

Let F/k be a normal field extension, and let X be an abelian variety
defined over F . Recall thatX descends to k if there exists an abelian variety
Y defined over k such that X and YF := Y ×k F are isomorphic. We shall
see that the product variety ∏

σ∈Gal(F/k)

Xσ

always descends to k, and shall investigate the properties of the k-variety
W with WF

∼=
∏
Xσ, known as the Weil restriction of X from F to k.

In the first section we develop the properties of the Weil restriction for a
more general class of objects, and return to look in detail at abelian varieties
in Section 5.2. If the abelian varietyA is defined over k, thenA is a factor of
W . The remaining factors ofW are related to the non-trivial idempotents of
End0

k(W ) as described in Section 5.2.2, which follows Kani and Rosen [24]
and Yu [69, 70].

By Lemma 5.2.5

[End0
k(W ) : End0

F (A)] = |〈σ ∈ G : A ' Aσ〉|,

so that if A is of CM type then W is also of CM type over k only if A is a k-
variety. We shall see in Theorem 5.2.16 that ifA is a k-variety of type 1 then
W/k is a product of simple non-isogenous abelian varieties of CM type. If
A andB are k-equivalent k-varieties of CM type then their Weil restrictions
have isomorphic endomorphism algebras; if moreover Aut(A) = ±1 and
A is of k-type 1 then the converse is also true, (see Proposition 5.2.18).

In Section 5.3, which largely follows the papers [33, 34] of Nakamura,
we investigate the endomorphism algebra of the Weil restriction of a CM
elliptic curve, with particular emphasis on the Q-curve case, and describe
its computation, giving a number of examples in Section 5.4. In Section 5.5
we consider abelian varieties of dimension 2. Let K be an imaginary qua-
dratic field and let k be a biquadratic CM field containing K. Section 5.5.1
investigates the existence of Q-curves E/H and subfields F of H such that
E/H has CM by K and the Weil restriction of E from H to F has CM by k
over F . In Section 5.5.2 we let k be a quartic CM field such that Gal(k/Q)

87
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is cyclic and let k0 be the maximal real subfield of k. If A is an abelian vari-
ety with CM by k then A is defined over the Hilbert class field of k, and the
theory of k0-varieties with CM by k is very similar to that of Q-curves. We
illustrate this by describing the Grössencharacters and calculating the endo-
morphism algebras of the Weil restrictions to k0 of a family of k0-varieties
where k has class number 4.

5.1. Weil Restriction in General

Let k be a field, F a finite extension of k and kalg an algebraic closure
of k containing F and suppose that {σ1, . . . , σn} is the set of distinct iso-
morphisms of F into kalg. Let X be a variety defined over F , let W be a
variety defined over k and suppose that φ is a map from WF := W ×k F
to X . Then for any 1 ≤ i ≤ n we can define a map φσi : WF → Xσi and
hence a map Φ := (φσ1 , . . . , φσn),

Φ : WF →
n∏
i=1

Xσi . (5.1)

Definition 5.1.1. If a map φ : WF → X exists such that the map Φ of (5.1)
is an isomorphism, then we call W the Weil restriction of X from F to k;
symbolically we write W := WF/k(X).

In some references, the Weil restriction of X is referred to as ‘the vari-
ety obtained from X by restriction of scalars (or restriction of the field of
definition) from F to k’.

Definition 5.1.2. Let F/k be a field extension. Given a morphism of k-
varieties λ : X → Y we denote by λF the natural extension of λ to a
morphism XF → YF .

Proposition 5.1.3 (Universal Mapping Property). Let F, k,X,W, φ and Φ
be as above and suppose that Φ is an isomorphism. Then if Y is a variety
defined over k, for any map λ : YF → X there is a unique morphism ζ from
Y to W defined over k such that λ = φ ◦ ζF .

Proof. The map (λσ1 , . . . , λσn) : YF →
∏
Xσi is fixed by every element of

{σ1, . . . , σn} and hence is defined over k, so we can take

ζ = (φσ1 , . . . , φσn)−1 ◦ (λσ1 , . . . , λσn).

�

Corollary 5.1.4. If WF/k(X) exists, it is unique up to isomorphism.
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FIGURE 1. Universal Mapping Property
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Proposition 5.1.5 (Weil [67] Proposition 1.3.1). Let F/k be a finite sepa-
rable extension of fields and let X1 and X2 be varieties defined over F with
well-defined Weil restrictions to k. Let Y be a subvariety of X1 ×X2. Then

WF/k(X1 ×X2) = WF/k(X1)×WF/k(X2), (5.2)

and WF/k(Y ) is defined.

Let Am
F and PmF denote respectively affine and projective space of di-

mension m over F .

Lemma 5.1.6 (Weil [67] p. 6). Let F/k be as in Proposition 5.1.5. If X is
isomorphic to either Am

F or PmF for m ≥ 1 then WF/k(X) is well defined.

Example 5.1.7. If F/k is a normal extension of degree n and X ∼= A1
F (the

affine line over F ) then WF/k(X) ∼= An
k .

Combining Proposition 5.1.5 and Lemma 5.1.6, we see that

Proposition 5.1.8. If X is a variety which is embeddable in affine or pro-
jective space over F then WF/k(X) is well defined.

Proposition 5.1.9. Let F/k be a finite separable extension and let X be a
variety defined over F . If X is embeddable in affine (projective) space over
F then WF/k(X) is embeddable in affine (projective) space over k.

Proof. By Theorem 7 of Weil [65], if F is a finite separable extension of k
and Y is a variety defined over F which descends to k, then if Y is embed-
dable in affine (projective) space over F , the descended variety is embed-
dable in affine (projective) space over k.

Now since X is embeddable in affine (projective) space, so is
∏

iX
σi

where the σi are defined as in (5.1), and the result follows immediately. �

Let F/k be a separable algebraic extension, and let S be the set of dis-
tinct isomorphisms of F into kalg. Let L ⊂ kalg be an extension of k. Then
if τ is an automorphism of kalg/L, we can define a right-action of τ on S by

tστ := (tσ)τ , where σ ∈ S, and t ∈ F. (5.3)
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We define an equivalence relation ∼ on S by setting σi ∼ σj if σi = σjτ
and let {si} be a set of representatives of equivalence classes of S with s1

the identity on F .
LetLi := F si ·L,Xi := Xsi ,W := WF ·L/L(X) andWi := WLi/L(Xi).

Now we have

W ×L F · L ∼=
∏
τ

(∏
i

Xsi

)τ
∼=

∏
i

Wi ×L F · L,

hence
W ∼=

∏
Wi. (5.4)

By definition there is an isomorphism Wi(L) ∼= X(Li) and hence

W (L) ∼=
∏

X(Li). (5.5)

Remark 5.1.10 (Semidirect products). Let G be a group and suppose that
N and H are subgroups of G with the properties that G = NH , N ∩H = 1
and N is a normal subgroup of G. Then G is the semidirect product of N
by H and we write G = N oH . For example, if G is the dihedral group of
order 8 then G ∼= C2 o C4.

Lemma 5.1.11. Suppose that L/F/k is an absolutely normal tower of num-
ber fields and X is a variety over L such that WL/k(X) is well defined. If
Gal(L/k) ∼= Gal(L/F ) o Gal(F/k), then

WL/k(X) = WF/k(WL/F (X)).

Proof. Let G := Gal(L/k), N := Gal(L/F ) and H := Gal(F/k). Ten-
soring by L and expanding the right hand side we have

WF/k(WL/F (X))×k L ∼=
∏
τ∈H

(
WL/F (X)×F L

)τ
∼=

∏
τ∈H

( ∏
σ∈N

Xσ
)τ
.

Since every element g of G has a unique expression g = στ with τ ∈ H
and σ ∈ N we are done. �

We have shown that Weil restriction is well defined for a far larger class
of objects than we need, but far smaller than that for which it is usually
defined. A more general definition, based upon Milne [29] is given below.
For a higher level of abstraction, see for example Bosch et al [5].
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Theorem 5.1.12. Let T → S be a finite, faithfully flat morphism of schemes,
and suppose that X is a quasi-projective T -scheme. Then there exists a
unique S-scheme W such that for any S-scheme Y ,

Hom(W,Y ) ∼= X(Y ×S T ). (5.6)

We shall write YT to denote Y ×S T .
If T = Spec(F ) and S = Spec(k) where F/k is a finite separable

extension of fields and X is a variety defined over F , the S-scheme W sat-
isfying (5.6) is the variety defined in (5.1.1) so in the general case of The-
orem 5.1.12 it is unambiguous to call the S-scheme W the Weil restriction
WT/S(X). In this case the content of part a) of the following proposition is
precisely that of Proposition 5.1.3.

Proposition 5.1.13. Suppose T, S,X and W are as in (5.1.12). Then
a) (Universal Mapping Property) There is a T -morphism

φ : WT → X

such that if φ′ is a T -morphism φ′ : YT → X , then there exists a
unique S-morphism ρ : Y → W such that φ′ = φ · ρT .

b) If X is a group scheme, then φ is a morphism of group schemes.
c) If X is smooth over T then W is smooth over S.

By b), we see that the Weil restriction of an abelian variety is always
a group scheme. If F/k is separable, then (5.1) shows that WF/k(A) is an
abelian variety, since it is isomorphic to an abelian variety over F . If F/k
is a purely inseparable field extension and A is an abelian variety defined
over F then WF/k(A) is not an abelian variety (see Milne [29] p. 178 for
more details).

When X is a variety with an affine model over F and F/k is normal,
we can find an explicit affine model for WF/k(X) by considering F as a
k-algebra and grouping to find k-rational terms as in the example below.

Example 5.1.14 (Frey [10]). Let k be a finite field of characteristic p ≡
1 mod 3 with |k| 6≡ 1 mod 9, and let F/k be a cyclic extension of degree 3.
Let Gal(F/k) = 〈τ〉 and let {1, u, u2} be a basis for F as an k-algebra with
the property that u3 = v is in k and u9 = 1. Then given an elliptic curve
E/F with affine patch

E : y2 = x3 + ax+ b, (5.7)

we set

x := x0 + ux1 + u2x2,

y := y0 + uy1 + u2y2.
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If E is defined over k then we have, after expanding and grouping powers
of u, a system of defining equations

2y0y1 + vy2
2 = 3vx2

1x2 + 3x2
0x1 + 3vx0x

2
2 + ax1,

2y0y2 + y2
1 = 3vx1x

2
2 + 3x2

0x2 + 3x0x
2
1 + ax2,

2vy1y2 + y2
0 = x3

0 + vx3
1 + v2x3

2 + 6vx0x1x2 + ax0 + b,

for an open affine subvariety of W := WF/k(E). The map sending (x, y)
to (x0, y0) embeds E in W as the closed subvariety of W defined by

x1 = x2 = y1 = y2 = 0.

In fact, W ' E × A where A/k is the irreducible abelian subvariety of
W determined by the condition that if P = (x, y) is a point of E(L) then
(x0, x1, x2, y0, y1, y2) is a point of A(k) if and only if

P + P τ + P τ2

= 0

with respect to the group law on E(L) (see Frey [10]). If E is not defined
over k then setting

a := a0 + ua1 + u2a2,

b := b0 + ub1 + u2b2

we have a model for an open affine subvariety of W given by

2y0y1 + vy2
2 = 3vx2

1x2 + 3x2
0x1 + 3vx0x

2
2 + a0x1 + va2x2 + a1x0 + b1,

2y0y2 + y2
1 = 3vx1x

2
2 + 3x2

0x2 + 3vx0x
2
1 + a0x2 + a1x1 + a2x0 + b2,

2vy1y2 + y2
0 =x3

0 + vx3
1 + v2x3

2 + 6vx0x1x2 + a0x0 + va1x2 + va2x1 + b0.

Since the extension F/k is separable, W is an abelian variety which is irre-
ducible over k.

5.2. Weil Restrictions of Abelian Varieties

We now consider the properties of Weil restrictions of abelian varieties,
and in particular CM elliptic curves, defined over number fields.

Let F/k be a Galois extension of number fields with discriminantDF/k,
let A/F be an abelian variety of dimension g, let W := WF/k(A), and let
L be a Galois extension of k containing F . For any finite prime p, we let
p be the characteristic of F p. Since W (k) ∼= A(F ), the map φ : WF → A
induces an isomorphism

W (L) ∼= Z[Gal(L/k)]⊗Z[Gal(L/F )] A(L), (5.8)

it follows that

T`(W ) ∼= Z`[Gk]⊗Z[GF ] T`(A), and V`(W ) ∼= Q`[Gk]⊗Q[GF ] T`(A),
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where we writeGk andGF for Gal(kalg/k) and Gal(F alg/F ). Therefore the
`-adic representation ρ`(W ) : Gk → Aut(V`(W )) is induced from ρ`(A)
via the inclusion GF ↪→ Gk.

Proposition 5.2.1. The Néron model commutes with Weil restriction, that
is, for any primes p of k and P of F with P dividing p,

WFP/kp(N(A,P)) = N(WF/k(A), p).

Proof. This is a consequence of the Universal Mapping Properties of the
Weil restriction as defined in Proposition 5.1.13 and of the Néron model as
in Definition 1.3.7. �

Proposition 5.2.2 (Milne [29] Proposition 1). Let F/k be an extension of
number fields, with discriminant DF/k, let A be an abelian variety of di-
mension g defined over F , and let W be the Weil restriction of A from F to
k. Then the conductor of W/k is

fW = NF/k(fA) ·D2g
F/k.

Remark 5.2.3. As a corollary we see that there are no abelian varieties over
Q with good reduction everywhere which arise from Weil restriction to Q,
simply because there are no unramified extensions of Q. Fontaine [8], and
independently Abrashkin, proved that there are no abelian varieties over Q
with good reduction everywhere.

For example, let K be an imaginary quadratic field with discriminant
DK and class number h, and let H be the Hilbert class field of K. The
discriminant of H/K is 1, but the discriminant of H/Q is Dh

K . By Propo-
sition 4.4.3, if DK is divisible by at least two primes congruent to 3 mod 4
there exists a Q-curveE/H with CM byK good reduction everywhere, and
the proposition above shows that W = WH/K(E) is an abelian variety with
good reduction everywhere over K, but that WH/Q(E) has bad reduction at
every prime dividing the discriminant of K. See also Example 5.2.15.

Proposition 5.2.4 (Milne [29] Proposition 3). Let F/k be a normal exten-
sion of number fields, let A be an abelian variety defined over F and let
W be the Weil restriction of A to k. Then the L-series of A/F , defined in
(1.19), is equal to the L-series of W/k.

5.2.1. Endomorphisms of WF/k(A). Let F/k be a finite normal ex-
tension of number fields, let A/F be an abelian variety, and set W :=
WF/k(A) and G := Gal(F/k). By definition,

WF
∼=
∏
σ∈G

Aσ,
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and hence
EndF (W ) ∼=

∏
(σ,τ)∈G×G

HomF (Aσ, Aτ ). (5.9)

Lemma 5.2.5. Let Φ = (φσ1 , . . . , φσ|G|) be the isomorphism defined in
(5.1). Then Endk(W ) ∼=

∑
σ∈G HomF (Aσ, A)φσ.

Proof. Suppose that there is an F -isogeny

ισ : Aσ → A.

Then the composite map λ := ισ ◦ φσ is a morphism WF → A and by
Proposition 5.1.3 there exists a unique k-morphism ζ : W → W such that
φ ◦ ζF = λ. Hence there is a subring R of Endk(W ) such that

R ∼=
∑
σ∈G

HomF (Aσ, A)φσ.

Let α = (ασ,τ ) be an element of EndF (W ). Then for any τ in G,

φτ (α(W )) =
∑
σ

ασ,τA
σ.

Now φτ (α(W )) = φτ (αω(W )) if and only if∑
σ

ασ,τA
σ =

∑
σ

ασ,ω−1τA
σ,

and hence we see that we need ατσ,τ = ασ,1 for all σ, τ ∈ G. �

This is true regardless of whether A is a k-variety over F . In particular
we see that

[End0
k(W ) : End0

F (A)] = |〈σ ∈ G : A ' Aσ〉|, (5.10)

and so [End0
k(W ) : End0

F (A)] = [F : k] if and only if A is a k-variety.

5.2.2. Factors of Abelian Varieties. In this section we investigate the
special case of Weil restriction from F to k of an abelian variety which is
defined over k.

Let A/k be an abelian variety with endomorphism algebra S. Recall
that an element ε of S is an idempotent if ε = ε2. If A is simple, then the
only idempotents of S are 1 and 0 and hence

Lemma 5.2.6. Any factor of A is k-isogenous to εA for some idempotent ε
in S.

By Poincaré’s Complete Reducibility Theorem (see Theorem 1.2.5),
there exist k-simple pairwise non-isogenous abelian varieties Ai and in-
tegers ni such that A is isogenous over k to the product

An1
1 × · · · × Anr

r , (5.11)
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and hence that

End0
k(A) ∼= Mn1(S1)⊕ · · · ⊕Mnr(Sr),

where Si := End0
k(Ai) is a division algebra. For each i there exists an

irreducible S-module Vi which is faithful over Mni
(Si). Let ρi : S →

EndQ(Vi) be the representation induced by Vi and χi the character associ-
ated with ρi.

Theorem 5.2.7 (Kani and Rosen [24] Theorem 1). Let ε be an idempotent
of End0

F (A). Then

εA ' Am1
1 × · · · × Amr

r , where mi :=
χi(ε)

dimQ Si
, i ∈ 1, . . . , r.

With A,F and k as above, suppose that F/k is normal with Galois
group G. Let W := WF/k(A) and let φ : W → A be the map defined in
Definition 5.1.1. We write RF for EndF (A) and define RF 〈G〉 to be the
twisted group ring with multiplication given by sσ ◦ tτ = stσ

−1
στ .

By Proposition 5.1.3, for any s in RF and σ in G there exists a unique
element s̃ of Endk(W ) such that φs̃ = sφ and a unique element ψσ of RF

such that φψσ = φσ
−1 . Let Ψ : RF 〈G〉 → Endk(W ) be the map sending∑

σ∈G

sσσ 7→
∑
σ∈G

s̃σψσ.

Let ΨQ be the natural extension of Ψ mappingRF 〈G〉⊗Q to End0
k(W ).

Lemma 5.2.8. Ψ is a ring homomorphism, and ΨQ is an isomorphism.

Proof. See Lemmas 2.2 and 2.3 of Yu [70]. �

Where it is unambiguous, we will also write Ψ for ΨQ.

Theorem 5.2.9 (Yu [69] Theorem 2). Let H be a subgroup of G. Then(∑
σ∈H ψσ

)
WF/k(A) and WFH/k(A) are isogenous over F .

From now on, we suppose that End0
k(A) = End0

F (A) is commutative.
This means that sσ = s for all s in RF and σ in G, and since ΨQ is an
isomorphism, End0

k(W ) is commutative if and only ifG is an abelian group.
We know that there exist simple abelian varieties B1, . . . , Br defined

over k such that
W ' Bn1

1 × · · · ×Bnr
r ,

and hence that

End0
k(W ) ∼= Mn1(T1)⊕ · · · ⊕Mnr(Tr)

where Ti = End0
k(Bi). Let {ρi} and {χi} be defined as in the discussion

above Theorem 5.2.7, with W taking the place of A.



96 5. WEIL RESTRICTIONS AND ENDOMORPHISM ALGEBRAS

Theorem 5.2.10 (Yu [70] Theorem A). Let A be an abelian variety defined
over a number field k. Let F be a Galois extension of k and suppose that
End0

k(A) = End0
F (A) = S is a field. Suppose that there are r distinct

irreducible characters χ1, . . . , χr ofG := Gal(F/k) over S, corresponding
to representations ρ1, . . . , ρr. Then the abelian varieties

Bi := Ψ

(
1

|G|
∑
σ∈G

ρi(σ
−1)Tσ

)
W χi(1),

are simple and pairwise non-k-isogenous and W =
∏

iB
ni
i where

ni =
χi(1)|G|∑

σ∈G χi(σ
−1)χi(σ)

·

If G is abelian then all the ρi are one-dimensional, χi(1) = 1 and we
have

Bi := Ψ

(
1

|G|
∑
σ∈G

χi(σ
−1)σ

)
W,

and ni = 1.

Corollary 5.2.11. IfA,F, k andW satisfy the conditions of Theorem 5.2.10
then A is isogenous to a simple factor of W :

A ' Ψ

(
1

|G|
∑
σ∈G

σ

)
W.

In particular, if F/k is a quadratic extension and AF is the twist of A by F ,
then

W ' A× AF .

Proposition 5.2.12. Let E be a Q-curve with CM by an order O of K, and
let F := Q(jE) and H := K(jE). Then E descends to F and WH/K(E)
descends to Q.

Proof. The first statement is a special case of Gross [16] Theorem 10.1.3.
For the second, letW := WH/K(E) andB := WF/Q(E). ThenBH

∼= WH ,
so by the uniqueness of Weil restriction, BK

∼= W . �

Theorem 5.2.13 (Milne [29] Theorem 3). Suppose that [F : k] = n and
End0

F (A) contains a commutative subalgebra S such that

[S : S ∩ End0
k(A)] = n.

Then if T := S ∩ End0
k(A) is a field, WF/k(A) is isogenous to An.

Example 5.2.14. Let E be an elliptic curve with CM by an order O of K,
and let F := K(jE) and k := Q(jE). Then End0

F (E) = K and End0
k(E) =

Q and so by Theorem 5.2.13, WF/k(E) ' E2.
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Example 5.2.15. Let E,F and K be as in the previous example and let
W := WF/K(E). By Proposition 5.2.12, W descends to Q so by Theo-
rem 5.2.13,

WK/Q(W ) ' W 2,

hence by Proposition 5.2.2, DK divides fW/Q.

5.2.3. Abelian Varieties of CM Type. Let A be a simple abelian vari-
ety of CM type (K,Φ) with reflex (K ′,Φ′), let F be a field of definition for
A containingK ′ and let χA be the Grössencharacter ofA/F . Let k be a sub-
field of F such that F/k is abelian and suppose that A is a k-variety. We are
interested in when the Weil restriction W := WF/k(A) is also a simple va-
riety of CM type, and more generally in the structure of the endomorphism
algebra End0

k(W ).
LetG := Gal(F/k), and for each element σ ofG, let ισ be an F -isogeny

Aσ → A, and let uσ be the k-endomorphism of W associated to ισ ◦ φσ by
the Universal Mapping Property. By Lemma 5.2.5,

End0
k(W ) ∼=

∑
σ∈G

K · uσ, (5.12)

so to understand the structure of End0
k(W ) we need to know when uσ and uτ

commute. If A descends to k then by Theorem 5.2.10 and Theorem 5.2.13
W is isogenous to a product of simple abelian varieties Bi and whether the
Bi are pairwise non-isogenous depends upon whether or not End0

k(A) =
End0

F (A). By Proposition 1.2.24, the Bi will be pairwise non-isogenous if
k contains the reflex field K ′. If A is a k-variety of type 1 then we have a
similar result.

Theorem 5.2.16. Let A be a simple abelian variety of CM type (K,Φ) with
reflex field K ′. Let k be a field containing K ′ and suppose that F is a finite
abelian extension of k such that F is a field of definition for A. Let W be
the Weil restriction WF/k(A). Then the following are equivalent:

a) A is a k-variety of type 1,
b) F (Ators)/k is abelian,
c) The `-adic representation ρ`(W ) is abelian for all `,
d) There exist CM fields Ti containing K such that∑

[Ti : K] = [F : k] and End0
k(W ) ∼=

∏
Ti.

Proof. Let Gk := Gal(kalg/k) and ρ` := ρ`(W ). The equivalence between
parts a) and b) is given by Theorem 2.3.12. The equivalence of b) and c)
follows from the definitions as by (5.8) b) holds if and only if F (Wtors)/k
is abelian and

Gal(F (Wtors)/k) = lim
n→∞

Gal(F (W [n])/k),
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and ∏
`

ρ`(Gk) ∼= lim
←
n

Gal(F (W [n])/k).

It remains to prove the equivalence of d) with a), b) and c). If d) holds
then W is the product of simple pairwise non-isogenous abelian varieties
Bi of CM type and that ρ` is abelian is a consequence of the fact that each
ρ`(Bi) is abelian, hence d) implies c). To show that c) implies d), let n :=
[F : k], K` := K ⊗ Q` and k` := k ⊗ Q` and consider subalgebras of
Endk`

(V`(W )) ∼= Mn(K`). Define R to be the image of ρ`(K[Gk]) in
Endk`

(V`(W )).
Considering the action of the quotient group Gal(F/k) on V`(W ), we

see thatR has dimension n overK`. By c)R is commutative, henceR must
be its own commutator in Endk`

(V`(W )). Now Endk(W ) ⊗ K` is also a
K`-algebra of rank n by (5.10) and by Lemma 5.2.5 commutes with R so

Endk(W )⊗K`
∼= R.

Now R is a commutative semisimple algebra of dimension n which implies
d). �

Remark 5.2.17. In Théorème 4.1 of [13], Goldstein and Schappacher prove
this theorem for elliptic curves with k = K = K ′ and F a finite abelian
extension of K containing the Hilbert class field of K. Nakamura [33]
noted that one could take k to be any intermediate field K ⊆ k ⊆ F .

In the special case that A descends to k, Theorem 5.2.16 shows that
the simple factors Bi of W , which we knew from Theorem 5.2.10 to be
pairwise non-isogenous, are of CM type.

Let F and k be as in Theorem 5.2.16, let A be a k-variety and let W :=
WF/k(A). Let p be a rational prime which is unramified in F/Q and at
whichA has good reduction, suppose that p is a degree 1 prime of k dividing
p, and let σ := (F/k; p). Let P be a prime of F dividing p. As in Section
2.4 we may choose ισ to be the isogeny whose reduction modulo P is the
pth power Frobenius, and hence by (2.17) and (2.18),

χA(P) = unσ.

where n is the order of σ. If A is a k-variety of type 1, it follows that

χA(P) = χ(p)n where χA = χ ◦ NF/k,

hence uσ = ζnχ(p) for some nth root of unity ζn which is independent of
p.

Suppose that there exists a k-variety B of type 1 and a quadratic exten-
sion of L/F and that A = BL. Let ε be the class of L/F in H2(F/k,±1).
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Since χB = φLχA, with notation as in Theorem 3.2.3 we have

unσ = φL(P)χA(P) = ε∗(σ)χA(P) (5.13)

and

uσuτ = φL(γσ,τ )uτuσ

= ε∗(σ, τ)uτuσ. (5.14)

Supposing that k is a CM field, let k0 := k〈ρ〉 be the maximal real
subfield of k, and suppose that F/k0 is normal and that A is a k0-variety.
Then by Proposition 10 of Shimura [55], W descends to k0 and

End0
k0

(W ) ∼=
∑
σ∈G

(uσ + uσρ)k0.

If A = Aρ then uρσ = uσρ hence, if A is a k-variety of type 1 then

χ(pρ) = χ(p)ρ. (5.15)

and End0
k0

(W ) is real. By Proposition 4.2.11, Equation (5.15) holds for all
primes p of k coprime to fχ if and only if χ is a canonical Hecke character
of Ik.

Proposition 5.2.18. Let A/F and B/F be abelian varieties of CM type
(K,Φ) which are k-varieties. Then if A and B are k-equivalent,

End0
k(WF/k(A)) ∼= End0

k(WF/k(B))

and if Aut(A) = {±1} and A and B are of k-type 1 then the converse
holds.

Proof. Suppose that A and B are k-equivalent. Then B = AL for some
quadratic extension L/F which represents the trivial class in H2(F/k,±1)
and the claim follows from (5.13) and (5.14) since ε∗ = ε∗ = 1.

If Aut(A) = {±1} thenB is the twist ofA by some quadratic extension
L/F and if A and B are both of k-type 1 then L/k is abelian, hence ε∗ = 1.
Now if End0

k(WF/k(A)) ∼= End0
k(WF/k(B)) then we must have ε∗(σ) = 1

for every element σ of G such that the order of σ is a power of two, which
implies that ε is trivial. �

Remark 5.2.19. In dimension 1 this result is due to Nakamura [34].

5.3. Endomorphisms of Weil Restrictions of Q- and K-Curves

Let K be an imaginary quadratic field and let E/F be an elliptic curve
with CM by an order O of K. Let k be a number field containing K and
suppose that F is a finite abelian extension of k which contains the ring
class field of O. By Theorem 5.2.16 if E is a k-curve of type 1 then W :=
WF/k(E) is a product of simple non-k-isogenous abelian varieties of CM
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type and hence End0
k(W ) is commutative. If O = OK and F is the Hilbert

class field of K then there is a stronger result.

Proposition 5.3.1 (Nakamura [33] Theorem 2). Let K be an imaginary
quadratic field and let H be the Hilbert class field of K. If E/H is a k-
curve of type 1 with CM by OK then W := WH/k(E) is a simple abelian
variety of CM type.

Proof. By Theorem 5.2.16 it is enough to show that End0
k(W ) is a field

of degree 2[H : k]. Let C be the subgroup of Cl(K) corresponding to
Gal(H/k) via the Artin mapping. For any prime p dividing |C| we let
Cp be the Sylow-p-subgroup of C. Let p1, . . . , pm be a set of independent
generators of Cp coprime to DK · NH/Q(fE), let σi := (H/k; pi) and let
ui := uσi

be as in (5.12). Setting r to be the integer such that |Cp| = pr,
and

Tp :=
m∏
i=1

K(ui),

the claim of the theorem is that [Tp : K] = pr for each p dividing h.
Let Kp denote the extension of K obtained by adjoining the group of

prth roots of unity. Now TpKp/Kp is a Kummer extension of degree pr, and
if p is odd we have the desired result because the embedding of K∗/(K∗)pr

into K∗p/(K
∗
p)
pr is injective. The case when p = 2 is similar, see Naka-

mura [33] for details. �

Let O be any order of K, let fO be the conductor of O and let E/HO
be a Q-curve with CM by O. By Proposition 4.1.11 there exists an elliptic
curve Em with CM by OK such that E and Em are isogenous over HO, and
E descends to a K-curve over H .

For a normal subfield k of HO, let W (k) := WHO/k(E). By Propo-
sition 4.1.11 and the Universal Mapping Property, W (k) and WHO/k(Em)
are isogenous, and hence have isomorphic endomorphism algebras.

If k contains H then Gal(F/k) is abelian and applying Theorem 5.2.10
to Em we see that W (k) is a product of simple non-isogenous varieties of
CM type, and in particular, that it has a factor isogenous to Em.

Suppose that k is contained in H . By Lemma 5.1.11, if there exists a
subfield F of HO containing H such that

Gal(HO/k) ∼= Gal(HO/F )×Gal(F/k),

then
W (k) ' WF/k(WHO/F (E)) ' WF/k(WHO/F (Em))

and W (k) contains a factor isogenous to WF/k(Em). Suppose no such
field F exists. By Corollary 2.2.9, this means that fO must be divisible
only primes dividing 2DK , and that DO must not be divisible by 32 since
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otherwise the genus field of HO is not contained in H . But then, if p2

divides DO, where p is some odd prime dividing DK then HO contains a
cyclic extension of H of order p, and there is a similar case if DK is odd
and DO is even. The only possibility remaining is

DK = −4d, and DO = −16d with d ≡ 1 mod 4. (5.16)

In Example 5.4.3 we shall see that in this case End0
K(W (K)) is sometimes

but not always a field.

Theorem 5.3.2 (Nakamura [33] Theorem 3). Let E be a K-curve defined
over H with CM by OK . Let W := WH/K(E) and set n := r2(H/K) and
h := hK . Then there are two possibilities

a) End0
K(W ) is a field of degree h over K.

b) The centre of End0
K(W ) is a field ZK of degree h/22m over K for

some m with 1 ≤ m ≤
⌊
n
2

⌋
, and End0

K(W ) ∼= M2m−1(R0), where
R0 is a quaternion algebra over ZK .

Proof. If E is of type 1, then this is a restatement of Proposition 5.3.1. If
E is of type 2 then by (5.14) and Lemma 3.2.8,

End0
K(W ) ∼= R1 ⊗Z · · · ⊗Z Rm,

where each Ri is a quaternion algebra over ZK . Therefore End0
K(W ) is

isomorphic to M2m−1(R0) for some quaternion algebra R0 over ZK . The
algebra R0 is the quaternion algebra which ramifies at each prime p of ZK
which is ramified in an odd number of the Ri.

�

Remark 5.3.3. IfR0 is a split quaternion algebra overZK then End0
K(W ) ∼=

M2m(ZK). In particular if m = 1 then W/K is simple only if R0 is a rami-
fied quaternion algebra.

Theorem 5.3.4 (Nakamura [34] Theorem 3). Let E be a Q-curve defined
over H with CM by OK . Let W := WH/K(E), as before and let ZQ be
the centre of End0

Q(W ). Then the possibilities for End0
Q(W ) and ZQ are

precisely those of Theorem 5.3.2 with K replaced by Q.

If E is a Q-curve of type 2 and End0
Q(W ) is a matrix algebra over a

ramified quaternion algebra RQ, then the natural question is whether or not
the quaternion algebra RK := RQ ⊗Z K is split.

As RQ may only be ramified at 2,∞ and rational primes dividing DK ,
it follows that RK will be ramified only if there are at least two primes of
ZK dividing 2, however this is not a sufficient condition.

In [33] Nakamura shows that if DK = −pqr for some rational primes
p ≡ 3 mod 4 and q, r ≡ 1 mod 4 and r4(H/K) = 0 then there exists a
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Q-curve E such that RK is ramified if and only if 2 splits in K and(
q

p

)
=

(
r

p

)
= −1.

The quadratic fields with discriminants −255 and −455, which have class
numbers 12 and 20 respectively, are examples satisfying these conditions.

Example 5.3.5. Suppose that K is the quadratic field with discriminant
−231 = −3 · 7 · 11. Then hK = 12, Gal(Fg/K) ∼= C×2

2 and

G−K := {λ3, λ7, λ11, λ3λ7λ11}.
By Propositions 4.1.1 and 4.1.3 the Q-curves Eλ of type 1 with good re-
duction outside DK will have characters of the form ϕ ◦ NH/K where ϕ is
a Hecke character of IK such that the restriction of ϕ to UK is equal to an
element λ in G−K . Taking (−3, 21) as a partial decomposition of DK as in
Lemma 3.3.2, we obtain a dihedral extension of L/K containing Fg, and
twisting by this extension gives us Q-curves of type 2.

Let FZ := Q(x) where x3 − 12x + 5 = 0. The endomorphism fields
End0

Q(WH/K(Eλ)) are

FZ(
√
−11,

√
7), FZ(

√
−3,

√
11), FZ(

√
3,
√
−7), FZ(

√
77,

√
33).

If E := EL
λ for some λ ∈ G−K then in three cases RQ is a split quaternion

algebra over FZ and in the fourth it is ramified at (2,∞). Since 2 splits in
K, this algebra remains ramified over FZK.

5.4. Computing Endomorphism Algebras

5.4.1. Curves of Type 1. Let K be an imaginary quadratic field, let
E/H be a Q-curve of type 1 with complex multiplication by OK and let
W := WF/K(E) where F/K is a finite abelian extension containing H .
Suppose that χE := χ ◦ NH/K . In order to calculate End0

Q(W ) we need to
find minimal polynomials for

χ(p) + χ(pρ)

for p in S where {(F/K; p) : p ∈ S} generates Gal(F/K) and each prime
in S is coprime to DK . Suppose that (F/K; p) has order n. Then pn, (pρ)n

and ppρ are principal, and expanding (χ(p) + χ(pρ))n and rearranging, we
obtain a polynomial fn,χ of degree n with coefficients in Q. For clarity of
notation we write p̄ for pρ in this section.

Example 5.4.1. Suppose n = 2. Then

(χ(p) + χ(p̄))2 = χ(p2) + χ(p̄2) + 2χ(pp̄),

hence
f2,χ(X) := X2 − (χ(p2) + χ(p̄2) + 2χ(pp̄)). (5.17)
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If n = 4 then

(χ(p) + χ(p̄))4 = χ(p4) + χ(p̄4) + 4χ(pp̄)(χ(p)2 + χ(p̄)2) + 6χ(pp̄)2

= χ(p4) + χ(p̄4) + 4χ(pp̄)(χ(p) + χ(p̄)2 − 2χ(pp̄)2,

hence

f4,χ(X) := X4 − 4χ(pp̄)X2 + 2χ(pp̄)2 − χ(p4)− χ(p̄4). (5.18)

Similarly

f3,χ(X) = X3 − 3χ(pp̄)X − χ(p3)− χ(p̄3), (5.19)

and in general we observe that every power of X with non-zero coefficients
in fn,χ has the same parity as n. If Gal(F/K) contains elements of order
greater than 2 then End0

Q(W ) will not usually be normal.

Example 5.4.2. Let K be the quadratic field with discriminant DK =
−759 = −3 · 11 · 23 and Hilbert class field H . The class group of K is
isomorphic to C2 ×C3 ×C4 and is generated by primes p2, p3 and p4 lying
over 389, 31 and 29 which have orders 2, 3 and 4 respectively.

There are four Q-equivalence classes of Q-curves with CM by OK de-
fined over H corresponding as in Example 5.3.5 to the odd quadratic char-
acters:

λ3, λ11, λ23, λ3λ11λ23

of IK . The character
λ11λ23 ◦ NH/K

corresponds to an extension ofL/H/K of typeC×2
2 ×C12 and the characters

λ3λ23 ◦ NH/K and λ3λ11 ◦ NH/K to extensions of type C4 × C12, hence the
curves corresponding to λ3 and λ11 areK-equivalent to those corresponding
to λ3λ11λ23 and λ23 respectively.

Evaluating the polynomials fj,χ(x) at pj for j ∈ {2, 3, 4} we find (after
removing square factors for j = 2),

λ f2,χ f3,χ f4,χ

λ3 x2 + 23 x3 − 93x+ 208 x4 + 116x2 + 2352
λ11 x2 − 23 x3 − 93x− 208 x4 + 116x2 + 1012
λ23 x2 + 33 x3 − 93x− 208 x4 − 116x2 + 1012

λ3λ11λ23 x2 − 33 x3 − 93x+ 208 x4 − 116x2 + 2352

Let Fj,χ denote the extension of Q with defining polynomial fj,χ(x).
The fields F3,χ are isomorphic for all χ. The fields F4,χ are non-normal with
quadratic subfields with discriminants 253, 12, 12 and 253 respectively.
When λ = λ3λ11λ23 all the fields Fj,χ are real.
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FIGURE 2. Example 5.4.3
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Gal(M/K) ∼= C×2
2 × C8

Gal(L/K) ∼= C2 × C8

Gal(F/K) ∼= C2 × C4

Gal(H/K) ∼= C2 × C2

Example 5.4.3. Let K = Q(
√
−21) and let H be the Hilbert class field of

K so that DK = −84 and Gal(H/K) ∼= C2 × C2. Let F be the ring class
field of conductor 2. The extension F/H is quadratic and Gal(F/K) ∼=
C2 × C4. The ring class field M of conductor 8 has Galois group isomor-
phic to C×2

2 × C8 over K. Let L be one of the subfields of M such that
Gal(L/K) ∼= C2 × C8 (see Figure 2).

The Q-curves E of type 1 with complex multiplication by OK and
Grössencharacters in Γ1(K) correspond to the quadratic characters:

λ3, λ−4λ3, λ7, λ−4λ7

of IK . By Proposition 4.1.6 every Q-curve of type 1 with CM by OK is
Q-equivalent to such a curve. Since λ−4λ3λ7 is a Dirichlet character of IK
there are twoK-equivalence classes of Q-curves. SettingW0 := WH/K(E)
where E runs through a set of representatives of Γ1(K) we find:

λ End0
Q(W0) End0

K(W0)

λ3 Q(
√
−2,

√
−14) K(

√
−2,

√
−14)

λ−4λ3 Q(
√
−42,

√
−6) K(

√
−42,

√
−6)

λ7 Q(
√

2,
√
−6) K(

√
−42,

√
−6)

λ−4λ7 Q(
√

42,
√
−14) K(

√
−2,

√
−14)

Since there are no canonical Hecke characters of IK , none of these fields is
real.

The extension of F/H has Dirichlet character λ−4 ◦ NH/K , so the four
isogeny classes of Q-curves over H combine into two over F . On the other
hand two classes ofK-curves, corresponding to the characters ν and νλ3λ7,
become Q-curves over F . These curves are isogenous to elliptic curves with
CM by O where O is the order of K with discriminant DO := 4DK . Up
to Q-equivalence these are the only Q-curves with CM by OK defined over
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F . Setting W1 := WF/K(E) we find:

λ End0
Q(W1) End0

K(W1)

λ3 Q(
√
−42,

√
−2,

√
7) H(

√
2)

λ7 Q(
√
−42,

√
2,
√
−6) H(

√
2)

ν K(
√
−3,

√
−4) H ×H

νλ3λ7 Q(
√

7,
√

21)×Q(
√

7,
√

21) H ×H

There are two subfields L,L′ of M which have Galois group C2 × C8

over K. Neither of these are normal over Q. Setting W2 := WL/K(E):

λ End0
Q(W2) End0

K(W2)

λ3 H(
√

2) H(
√

2)×H(
√

2)

λ7 Q(
√
−3,

√
−7,

√
2)×Q(

√
−3,

√
−7,

√
2) H(

√
2)×H(

√
2)

ν H(
√

2) H(
√

2)×H(
√

2)

νλ3λ7 Q(
√
−3,

√
−7,

√
2)×Q(

√
−3,

√
−7,

√
2) H(

√
2)×H(

√
2)

5.4.2. Type 2 Curves. LetK be a non-exceptional imaginary quadratic
field with discriminant DK divisible by at least three distinct primes. Let
F be an abelian extension of K containing H and let E0/F and E/F be
Q-curves of types 1 and 2 respectively. Let L be the quadratic extension of
F such that E = EL

0 .
Then, setting χE0 := χ0 ◦ NF/K ,

χE = φL · χE0 = φL · χ0 ◦ NF/K .

Let S be a subset of G := Gal(F/K) such that each element σ of S has
the properties that the sequence

1 → Gal(F/F 〈σ〉) → G→ Gal(F 〈σ〉/K) → 1

splits and that the order of σ is either odd or a power of 2. Since G is
abelian, we can further require that S is a generating subset of G.

Since L/F 〈σ〉 is abelian E is of F 〈σ〉-type 1, hence χE = χσ ◦ NF/Fσ

for some Hecke character χσ of IF 〈σ〉 . Moreover there exists a Dirichlet
character φσ of IF 〈σ〉 such that φL = φσ ◦ NF/F 〈σ〉 hence

χσ = φσ · χ0 ◦ NF/F 〈σ〉 . (5.20)

Let P be a prime of F 〈σ〉 coprime to DK such that (F/F 〈σ〉; P) = σ. Let
Q be a prime of F dividing P and let p be a prime of K lying under P.



106 5. WEIL RESTRICTIONS AND ENDOMORPHISM ALGEBRAS

F Q

F 〈σ〉 P

K p

Then
χE(Q) = χσ(P

n) = φσ(P
n)χ0(p

n), (5.21)

where n is the order of σ and

χσ(PP) = φσ(PP) · χ0(pp), (5.22)

so if we can evaluate φσ(Pn) and φσ(PP), we can construct a minimal
polynomial for uσ + uσρ as in the previous section. Now End0

Q(W ) is
generated by the elements

{tσ := uσ + uσρ : σ ∈ S}

and

tσtτ = εL∗(σ, τ)tτ tσ

= φL(γσ,τ )tτ tσ.

Therefore, using the techniques developed in Chapter 3 we can con-
struct endomorphism algebras corresponding to each Q-equivalence class
of Q-curves over H .

Example 5.4.4. LetDK = −660 = −4 ·3 ·5 ·11 so that Gal(H/K) ∼= C×3
2 .

Let F be the dihedral extension of Q containing Q(
√
−3,

√
−11) unrami-

fied outside 33, and let L = FH . By construction the centre of Gal(L/K)
will contain the automorphism σ of H sending

√
5 to −

√
5. Now σ =

(H/K; p) where p is a prime of K lying over 53, and the remainder of the
class group is generated by primes lying over 59 and 83. There are eight
Q-equivalence classes of Q-curves of type 1 over H . Since DK ≡ 4 mod 8
and r4(H/K) = 0 it follows from Proposition 3.3.23 that c4(H/K) = 2, so
there are four K-equivalence classes of Q-curves. Evaluating elements of
G+
K on generators of Cl(K) we find that

λ−4λ3λ5λ11

is a Dirichlet character of IK . Let E := EL
λ where Eλ runs through a

set of representatives of Γ1(K). The Weil restrictions WH/K(E) form two
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categories depending on whether ZQ is Q(
√
−33) or Q(

√
33):

k ramified primes
a. Q(

√
33) p2, p

′
2

b. Q(
√
−33) split

where λ is one of
λ3, λ−4λ3, λ5λ11, λ−4λ5λ11

in the former case and

λ3λ5, λ−4λ3λ5, λ11, λ−4λ11

in the latter.

In Definition 3.2.9 we defined G(m)
H/K to be the subset of fields L in GH/K

such that
|Gal(L/K)/Z(Gal(L/K))| = 2m, m ≥ 0.

In the examples above we have considered only twists of type 1 curves by
L ∈ G(1)

H/K , but in theory at least it is possible to use the same methods for

arbitrary m. We can express any field L in G(m)
H/K as a product of the form

L := L1 ◦ · · · ◦ Lm,

where Li belongs to G(1)
H/K for 1 ≤ i ≤ m. This decomposition determines

a set of mutually disjoint pairs σi, τi such that εi∗(σi, τi) = −1. By Theo-
rem 3.2.3, εL∗ =

∏
i εi∗, so the commutator relations of the endomorphism

algebra may be derived from those of the Li in a manner corresponding to
the previous example.

The computational difficulties are therefore chiefly those of working
with large fields since if G(2)

H/K is non-empty thenK must have class number
at least 16, and any field L in GH/K will have absolute degree at least 64.

Remark 5.4.5. For the general case of Weil restrictions of abelian varieties
it may not always be possible to break the twist down in this way, since it is
not always true that G(1)

F/k contains a basis for GsF/k/As
F/k. See Massy [27]

p. 525 for an example.

5.5. Abelian Surfaces and Weil Restrictions

5.5.1. Abelian Surfaces as Weil Restrictions: Biquadratic CM fields.
Let F be a quartic CM field such that Gal(F/Q) ∼= C×2

2 . The reflex field
K of any CM type (F,Ψ) is an imaginary quadratic subfield of F , and
consequently if A/k is an abelian variety of type (F,Ψ), then A splits into
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a product E1 × E2 of elliptic curves with CM by K over some quadratic
extension k′/k. We are interested in the cases where

A ∼= Wk′/k(E)

for some elliptic curve E.
Suppose that E is an elliptic curve with CM by K. Let H be the Hilbert

class field of K, and let σ be an element of Gal(H/K) of order 2. If
W = WH/H〈σ〉(E), then WH is isomorphic to E × Eσ and End0

K(W ) is
isomorphic to K(uσ) if E is H-isogenous to Eσ and to K otherwise.

Let F/k be a finite Galois extension of number fields. As in Section 3.1
we say that F/k satisfies Albert’s condition if -1 belongs to the norm group
NF/M(M∗) for every quadratic subfieldM of F containing k. Recall that by
Theorem 3.1.8, F/M satisfies Albert’s condition if and only if there exists
a quadratic extension L/F cyclic over M and that by (3.4), there exists a
quadratic extension L/F cyclic over M and normal over Q if and only if
c4(F/M) = 1.

Proposition 5.5.1. Let D1 and D2 be negative discriminants such that if
4|D2 then (D2/4)|D1 and if D2 6≡ 4 mod 8 then D2|D1. Let K1 and K2 be
the quadratic fields with discriminants D1 and D2 respectively, let H be the
Hilbert class field of K1 and set F := K1K2.

Then ifH/K1 satisfies Albert’s condition there exists an elliptic curveE
with CM by K1 and an element σ of Gal(H/K1) such that WH/H〈σ〉(E) is
an abelian variety of type (F,Ψ), where Ψ is induced from K1. Moreover if
c4(H/H

〈σ〉) = 1, and K1 is non-exceptional (resp. exceptional) then there
exists a Q-curve (resp. K1-curve) of type 1 with this property.

Proof. Suppose thatK is an imaginary quadratic field such thatH/K satis-
fies Albert’s condition and letE/H be aK-curve of type 1 with CM byOK .
For any σ in Gal(H/K) of order 2, the Weil restrictionWσ := WH/H〈σ〉(E)

has endomorphism algebra isomorphic to K(
√
dσ) for some integer dσ di-

viding DK . If Dσ is the discriminant of Q(
√
dσ), then DK and Dσ satisfy

the conditions of the proposition on D1 and D2. Let σ run through a set
of independent generators of Gal(H/K)[2]. Since each field K(

√
Dσ) is

contained in EndK(WH/K(E)), which is a field, they must all be distinct.
Since Hecke characters are homomorphisms, K(

√
Dστ ) = K(

√
DσDτ )

and hence half the possible values of D2 are realized as Dσ for some σ ∈
Gal(H/K). Now suppose that there exists some quadratic extension L/H
such that L/Hσ is cyclic. Then by (5.21) the endomorphism algebra of
WH/H〈σ〉(E

L) is isomorphic to K(
√
−dσ).

Suppose that c4(H/H〈σ〉) = 1. We can then choose L to be a normal
extension of Q which means that EL is a K-curve. If K is non-exceptional,
then we can choose E to be a Q-curve, in which case EL is a Q-curve. �
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Example 5.5.2. Suppose that D1 = −195 and D2 = −39, so that F =
Q(
√
−195,

√
−39). Let K := K1 and H := HK . The class number of OK

is 4 and the elements of Gal(H/K) of order 2 are

σi := (H/K; pi), i = 1, 2, 3

where p1, p2 and p3 are primes ofK dividing p1 := 7, p2 := 11 and p3 := 17
respectively. Suppose that E is the Q-curve of type 1 with CM by OK with
Grössencharacter corresponding to λ3λ5λ13 and let M = H〈σ2〉. Then

Q(uσ2 + uσ2ρ) = Q(
√

5),

and hence
End0

M(WH/M(E)) = K(
√

5) = F.

As c4(H/K) is maximal, we can deal with the other negative discrimi-
nants D2 dividing D1 or 4D1 in a similar manner to find Q-curves Eλ and
fields M := H〈σi〉 such that

End0
M(WH/M(Eλ)) = Q(

√
D1,

√
D2)

as indicated by the table below:

D2 pi λ
−39 11 λ3λ13, λ3λ5λ13

−15 7 λ3, λ3λ5λ13

−3 17 λ3λ5, λ3λ5λ13

−260 17 λ3, λ3λ13

−52 7 λ3λ5, λ3λ13

−20 11 λ3, λ3λ5

Next we consider an example where c4 is non-maximal.

Example 5.5.3. Let D1 = −651 = −3 · 7 · 31 and let H be the Hilbert
class field of K1. The class group of K1 is isomorphic to C2×C4 and since
D1 is odd c4(H/K1) = 2 − r4(H/K1) = 1 by Proposition 3.3.23. The
elements of order 2 in Gal(H/K1) correspond to primes of K1 dividing 13,
61 and 67. Looking at the quadratic extensions of H abelian over K1 we
find representatives for all possible values of D2 except D2 = −868. Let
p be a prime of K1 dividing 61, and let M be the decomposition field of p
in H . Every strictly admissible extension of H abelian over K1 has Galois
group isomorphic to C2 × C2 over M so we want to find a C4 extension
of M containing H . Let H651 be the ray class field of conductor 651 · OM .
There are severalC4 subextensions ofH651 containingH , hence there exists
an elliptic curve E/H with good reduction outside D1 such that WH/M(E)

has CM by Q(
√
−651,

√
−868).
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We can choose E to be a K1-curve, if we are willing to relax the condi-
tion on bad reduction. Let p and pρ be the primes of K dividing 29, and let
L be the quadratic extension of H corresponding to the Dirichlet character

φ := λp ◦ NH/K .

The extension L/M is cyclic of degree four and becomes normal over the
ring class field of K of conductor 29, which has Galois group isomorphic
to C2 × C4 × C28 over K.

Let S := {3, 7, 31, 651}. In the following table p ∈ {13, 61, 67} is
the rational prime determining M as in the previous example and k is the
smallest field such that E is a k-curve of type 1. The integers f are such
that we may choose E to be unramified outside primes dividing f subject
to the conditions that E is a k-curve of type 1 and that

End0
M(WH/M(Eλ)) = Q(

√
D1,

√
D2).

D2 p f k
−3 61 d ∈ S Q
−7 67 7 Q
−31 13 7 Q
−84 13 3, 31 Q
−372 67 3, 31 Q
−868 61 651 M
−868 61 d · p, d ∈ S K1

If hK = 2, and E is a K-curve defined over H then the Weil restriction
WH/K(E) will have CM by a biquadratic field containingK. The following
result of Yang [68] shows that there is a partial converse:

Proposition 5.5.4 (Yang [68] Corollary 3.6). When DK is coprime to 6,
every CM abelian variety of dimension hK defined over K is isogenous to
the Weil restriction of some CM elliptic curve defined over H .

5.5.2. Weil Restrictions of Abelian Surfaces: Cyclic Quartic CM
Fields. Let k be a quartic CM field such that Gal(k/Q) ∼= C4. The reflex
of any CM type (k,Ψ) is (k,Ψ−1) hence any abelian variety A with CM
by an order of k is absolutely simple. Further, the field of moduli of A is
contained in the Hilbert class field H of k, so A is defined over H .

Let k0 be the maximal real subfield of k and let ∞1 denote the infinite
place of k corresponding to the inclusion of k in C. Let σ be a generator
of Gal(k/Q), let ι be a fixed embedding of k into C, and let Ψ be {ι, ισ}
where we define ισ(x) := ι(xσ) for any element x of k. Note that then
Ψ−1 = {ι, ισ3}.
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If f := fΨ,∞1 is the map from IH to C introduced in Definition 2.3.1
then for any idele α of IH

f(α) = NH/k(α∞1)
1+σ3

.

Let λ be a quadratic character of Uk such that

λ(u)u1+σ3

= 1 (5.23)

for every unit u of Ok. We now have a situation very similar to that of
Proposition 4.1.1.

Proposition 5.5.5. Let (k,Ψ) and ∞1 be as above and let λ be a quadratic
character of Uk satisfying (5.23). Then there exists a Hecke character ϕ of
Ik such that

a) if α ∈ Uk then ϕun(α) = λ(α),
b) if α ∈ K∗∞ then ϕ(α) = α1+σ3

∞1
,

and χ := ϕ ◦ NH/K is the Grössencharacter of an abelian variety A/H of
type (k,Ψ).

Proof. See Theorem 11 and Example 1 of p. 525 of Shimura [55]. �

An abelian variety A of CM type (k,Ψ) will have automorphism group
{±1} except if k = Q(µ5) where µ5 is a fifth root of unity, so excluding
this case we are in much the same position as considering quadratic twists
of elliptic curves with CM by K where DK < −4. If k0 has class number 1
then, as discussed in Section 4.2.1, whether or not there exists a canonical
Hecke character of Ik, depends upon the structure of the local unit group
Up at primes p of k dividing 2. In particular, if Dk is odd then there is a
unique quadratic character λ of Uk such that if ϕ is a canonical character of
Ik the restriction of ϕun to Uk is equal to λ. If Dk is even then there are
0, 4 or 8 such characters of Uk. We refer to Rohrlich [41] for the precise
conditions and Murabayashi [32] for examples of the determination of the
quadratic characters of Up.

We shall avoid this complexity by requiring that the discriminant Dk of
k/Q be odd. We would also like to ensure that there exist k0-varieties of
type 2, hence we look for quartic CM fields with class groups isomorphic
to C×2

2 , the smallest group for which this will occur.
From the lists in Park-Kwon [36] we see that there are 13 cyclic quartic

CM fields k with class number 4 which have maximal real subfields k0 with
class number 1. Of these, all have class group isomorphic to C×2

2 and 5
have discriminants divisible by three rational primes and hence their Hilbert
class fields are abelian over Q. In the remaining cases one of the two prime
divisors of Dk splits in k0/Q, so any towers of admissible extensions of k
of the kind studied in Chapter 3 must take k0 rather than Q as their base.
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Example 5.5.6. Let k := Q(
√
−255 + 60

√
17). The maximal real subfield

k0 of k is Q(
√

17), the discriminant of k is Dk := 32 · 52 · 173, the Hilbert
class field is H := k(

√
5,
√
−3), and the group of units of Ok is generated

by {−1, u} with u = 4 +
√

17. Now since every rational prime dividing
Dk is odd, and either inert or ramified in k0, the quadratic characters of Uk
unramified outside Dk are simply the quadratic residue characters defined
by

λp(x) :=

(
x̄

p

)
where x̄ is the image of x in kp and p is the unique prime of k dividing p.

Since u1+σ3
= −1, the conditions for a quadratic character λ to satisfy

(5.23) are that λ(−1) = 1 and λ(u) = −1. For λ ◦ NH/k to be a Dirichlet
character of IH however, we need λ(−1) = λ(u) = 1.

Evaluating the characters λp we find

p λp(−1) λp(u)
3 1 −1
5 1 1
17 1 1

hence there are Dirichlet characters of IH of the form λ ◦ NH/k with λ in
{λ5, λ17, λ5λ17}, and each of the corresponding extensions L/H is nor-
mal over Q and C2 × C4 over k, so c4(H/k) = 2. There is a dihedral
extension of Q defined by the partial decomposition (−15, 85) so we have
dimF2 GsH/k/As

H/k = 1.

For this choice of k, the primes congruent to 1 and 3 mod 4 behave in
a manner reminiscent of their roles in an imaginary quadratic field, with
u taking the place of −1. The following example shows that this is not a
general rule.

Example 5.5.7. Let k := Q(
√
−105 + 42

√
5). The discriminant of k/Q is

Dk := 32 · 53 · 72 and the Hilbert class field of k is H := k(
√
−3,

√
−7),

and again H/Q is abelian. The unit group of Ok is generated by −1 and u
where

u :=
−1 +

√
5

2
and

p λp(−1) λp(u)
3 1 −1
5 1 −1
7 1 −1
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hence the k-equivalence classes of AH/k are represented by the extensions
corresponding to the Dirichlet characters λ ◦ NH/k with

λ ∈ {λ3λ5, λ3λ7, λ5λ7}.
Each of these characters defines an extension of k with Galois group C2 ×
C4, so c4(H/k) = 2.

Returning to our first example, k := Q(
√
−255 + 60

√
17), and to the

main subject of this chapter we will now investigate the endomorphism al-
gebras of the Weil restrictions of abelian varieties A/H with CM by k and
Grössencharacters fixed by Gal(H/k0). The situation is almost entirely
analogous to that when A has dimension 1 and we follow the same proce-
dure as in Section 5.4.

The class group of k is generated by primes p1, p2 dividing 43 and 47
respectively. Choosing generators ai and bi of p2

i and pip
ρ
i we find:

a1 + aρ1 = −6
√

17− 23, b1 = 3
√

17 + 14

a2 + aρ2 = −2
√

17− 1, b2 =
√

17 + 8.

Let Aλ be the abelian variety of CM type (k,Ψ) with Grössencharacter
determined as in Proposition 5.5.5 by the quadratic character λ and let
Wλ := WH/k0(Aλ). Setting σi := (H/k; pi), and letting uσ be as in (5.12),

End0
k0

(Wλ) = k0(uσ1 + uσ1ρ, uσ2 + uσ2ρ)

and
(uσi

+ uσiρ)
2 = λ(p2

i )ai + 2λ(pip
ρ
i )bi.

Evaluating characters we find:

λ End0
k0

(Wλ)

λ3 k0(
√

5,
√
−15)

λ3λ5 k0(
√
−5,

√
15)

λ3λ17 k0(
√
−5,

√
−15)

λ3λ5λ17 k0(
√

5,
√

15)

Remark 5.5.8. It may be seen from the table above that we have λ(p2
i ) =

λ(pip
ρ
i ) for each λ; this is a consequence of the fact that each of the ex-

tensions in AH/k is also abelian over Q. In dimension 1, this occurs for
example when DK = −195.

We conclude by calculating the endomorphism algebra of the Weil re-
striction of a k0-variety of k-type 2.

Let L be the compositum HL0 where L0 is a dihedral extension of
Q containing Q(

√
−15,

√
85) and cyclic over Q(

√
−51). Let A/H be a

canonical variety of k-type 1 and let W be the Weil restriction of AL from
H to k0.
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Let Fi be the decomposition field of pi in H and let Pi and be primes
of Fi dividing pi. We denote the Hecke character of L/Fi by φi. Now
φ1(P

2
1) = 1 and φ1(P1P

ρ
1) = −1 hence,

(uσ1 + uσ1ρ)
2 = a1 − 2b1 = −12

√
17− 51.

The extension L/F2 is cyclic hence φ2(P
2
2) = −1 and since φ2(P2P

ρ
2) = 1

we have
(uσ2 + uσ2ρ)

2 = −a2 + 2b2 = 4
√

17 + 17.

The algebra of k0-rational endomorphisms End0
k0

(W ) is the quaternion
algebra generated by uσ1 + uσ1ρ and uσ2 + uσ2ρ over k0, ramifies at the
primes of k0 dividing 3 and 17 and splits over k.

Calculating the remaining endomorphism algebras in a similar way one
finds that they are all ramified over k0 and split over k.



APPENDIX A

The purpose of this appendix is to describe the groups occuring as
Gal(L/k) when L/F/k is a normal tower of fields such that Gal(F/k) ∼=
C×n2 and L/F is quadratic, and in particular to prove Lemma 3.2.18, Propo-
sition 3.2.19 and Theorem 3.2.21. For convenience we shall repeat some of
the definitions and results found in Chapter 3. Restated lemmas and theo-
rems have references to their original statement given in brackets.

For any group G we recall that we denote the centre of G by Z(G) and
the number of elements of G having order n by Σn(G).

Lemma A.1 (Lemma 3.2.8). With F and k as above, let L be a quadratic
extension of F which is normal over k and set G := Gal(F/k) and G̃ :=
Gal(L/k). Then

G̃/Z(G̃) ∼= C×2m
2 , with 0 ≤ m ≤

⌊n
2

⌋
, (A.1)

there are elements σ1, . . . , σ2m of G satisfying

εL∗(σ2i, σ2i−1) =−1, 1 ≤ i ≤ m,
εL∗(σi, σj) = 1 for all j 6∈ {i+ 1, i− 1},

and σ̃1, . . . , σ̃2m is a basis for G̃/Z(G̃).

Definition A.2. LetG be a group, and letH andM be subgroups ofG such
that G = HM and H ∩M ⊂ Z(G). We say that G is the central product
of H and M if every element of M commutes with every element of H .

We denote the central product of groups H and M by HM . The direct
product ofH andM is denotedH×M as in Chapter 3. LetD andQ denote
respectively the dihedral and quaternion groups of order 8. In all central
products of the form GD or GQ, the intersection G∩D (resp. G∩Q) is to
be taken as Z(D) (resp. Z(Q)).

Definition A.3. A p-group G is extra-special if it has centre of order p and

G/Z(G) ∼= C×np

for some integer n ≥ 1.
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Theorem A.4 (Gorenstein [14] Theorem 5.5.2). An extra-special 2-group
is the central product of r ≥ 1 nonabelian subgroups of order 8. Moreover
DkQr−k is isomorphic to DQr−1 and to Qr if k is even, and the groups
DQr−1 and Qr are not isomorphic.

Lemma A.5. The central product of C4 and D is isomorphic to the central
product of C4 and Q.

Proof. The groups C4Q and C4D each have order 16, centre C4 and the
property that G/Z(G) ∼= C×2

2 . Checking the list of groups in Magma’s
Small Groups Database, which contains every 2-group of order at most 26,
we find that up to isomorphism there is exactly one group with these prop-
erties. �

Definition A.6. Let n be an even integer. We define

a) Qn to be the central product Qn/2,
b) Dn to be the central product DQr where r = n−2

2
and

c) Bn+1 to be the central product of C4 with Dn.

The group Dn has a polycyclic presentation as the group generated by
σ1, . . . , σn+1 where

σ2a−1σ2aσ
−1
2a−1 = σ2aσn+1, for 1 ≤ a ≤ n/2, (A.2)

and σ2
i = 1 for 1 ≤ i ≤ n+ 1.

Similarly Qn is isomorphic to the group generated by σ0, . . . , σn where
(A.2) holds and σ2

1 = σ2
2 = σn+1 and σ2

i = 1 for 3 ≤ i ≤ n+ 1. The group
Bn+1 is isomorphic to the group generated by σ1, . . . , σn+2 where

σ2a−1σ2aσ
−1
2a−1 = σ2aσn+2, for 1 ≤ a ≤ n/2, (A.3)

σ2
1 = . . . = σ2

n = 1 and σ4
n+1 = 1.

Lemma A.7. Let G̃ be a group satisfying the conditions of Lemma 3.2.8.
Then G̃ is either abelian or the central product of an abelian group A with
an extra-special group E where

A ∼=
{
C4 × C×a2 if Z(G) contains an element of order 4,
C×a+2

2 otherwise.

Proof. With notation as in Lemma A.1, it is clear that

G̃ ∼= Z(G̃)〈σ̃1, · · · , σ̃2m〉.

Now each pair σ2i−1, σ2i with i ≤ m generates an extra-special group Ei of
order 8 and Ei commutes with Ej for all i 6= j. �
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Lemma A.8 (Lemma 3.2.18). Let n be an even integer. The groups G
defined in Definition 3.2.16 have the properties described in the following
table:

G #G Σ4(G) Z(G)
Dn 2n+1 2n − 2n/2 C2

Qn 2n+1 2n + 2n/2 C2

Bn+1 2n+2 2n+1 C4

Proof. The structure ofZ(G) is immediate from the definition and the num-
ber of elements of G from the standard fact that if G = HM then

|G| = |H||M |
|H ∩M |

,

(see eg. Alperin and Bell [1] Proposition 1.12). For proof of the values
of Σ4(G) if G is isomorphic to Dn or Qn see Gorenstein [14] p. 206. It
remains to show that the number of elements of order 4 of Bn+1 is 2n. If
we write

Bn+1 = 〈σ1, σ2, . . . , σn+2〉,
then with our standard ordering of generators

Dn
∼= 〈σ1, σ2, . . . , σn, σn+2〉.

Now if g has order 2 in Dn, or if g = 1 then gσn+1 has order 4 in Bn+1. On
the other hand if g has order 4 in Dn then g has order 4 in Bn and gσn+1

has order 2. Therefore

ε4(Bn+1) = ε4(Dn) + ε2(Dn) + 1 = |Dn|.

�

Definition A0.9. Letm and n be integers with n ≥ 2, 0 ≤ m < n and n−m
even. If n is even and m = 0 then define Tn,m := {Dn,Qn}, otherwise

Tn,m = {Dn,m,Bn,m,Qn,m},

where

Dn,m := C×m2 ×Dn−m,

Qn,m := C×m2 ×Qn−m and

Bn,m := C×m−1
2 ×Bn+1−m.

Theorem A.9 (Theorem 3.2.21). Let m and n be as in Definition A0.9. If
G̃ is a group satisfying Lemma 3.2.8 of order 2n+1 with n generators and
centres of order 2m+1, then G̃ is isomorphic to a group in Tn,m.



118 A

Proof. If G̃ is a non-abelian group satisfying Lemma 3.2.8 it follows from
Lemma A.7, Theorem A.4 and Lemma A.5 that G̃ is isomorphic to the
central product ofC×m2 with one of Dr, Qr or Br, and the orders and centres
of such groups follow from Lemma A.8. �

Remark A0.10. The claims of Proposition 3.2.19 are a subset of those of
Theorem 3.2.21.
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