490 research outputs found
Structural and magnetic properties of Ru/Ni multilayers
International audienceRu/Ni multilayers of different Ni thickness have been fabricated using magnetron sputtering. The structure of the multilayers has been determined by grazing incidence X-ray diffraction and X-ray reflectivity and their magnetic properties by magnetization and polarized neutron reflectivity measurements. The presence of Ru leads to the formation of a hexagonal Ni structure within interfacial layer ~1 nm above each Ru layer, while the rest of the Ni layer relaxes to the equilibrium fcc structure. The hcp Ni interfacial layer has a substantially increased cell volume is ferromagnetic with an atomic magnetic moment that increases with Ni layer thickness but remains lower than the value predicted from ab initio calculations
The influence of carbon on the resistivity recovery of proton irradiated Fe–11at.% Cr alloys
AbstractThe effect of carbon on the point defect migration properties in Fe–Cr alloys with a concentration of 11 at.% Cr is studied by means of resistivity recovery measurements after low temperature proton irradiation. The presence of carbon mainly affects features of the resistivity recovery spectra in the temperature ranges of (a) 150–200K, which are linked to self-interstitial defects, and (b) 400–500K, which are probably due to vacancy and vacancy-carbon complexes. The experimental results are discussed in terms of the possible interactions of carbon with radiation defects and its influence on solute atom re-ordering
Phase stability of Fe-5at%Cr and Fe-10at%Cr films under Fe+ ion irradiation
This work is within the objective of understanding the effects caused to Fe–Cr alloys by fast Fe ion irradiation. As the penetration length of Fe ion is of the order of hundreds of nanometers, 70 nm Fe-5at%C and Fe-10at%Cr films were irradiated at room temperature with 490 keV Fe+ ions at increasing fluence corresponding to a maximum damage of 50 displacements per atom (dpa). In Fe-5at%Cr alloy the Cr solute concentration remains unaltered even after a damage of 50 dpa. In the 10at%Cr the Cr solute concentration is reduced, with the increase of damage, asymptotically to a value of 7.2 at%
Identification of Residues in the Heme Domain of Soluble Guanylyl Cyclase that are Important for Basal and Stimulated Catalytic Activity
Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC
Proteome Profiling in Murine Models of Multiple Sclerosis: Identification of Stage Specific Markers and Culprits for Tissue Damage
The identification of new biomarkers is of high interest for the prediction of the disease course and also for the identification of pathomechanisms in multiple sclerosis (MS). To specify markers of the chronic disease phase, we performed proteome profiling during the later phase of myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, day 35 after immunization) as a model disease mimicking many aspects of secondary progressive MS. In comparison to healthy controls, high resolution 2 dimensional gel electrophoresis revealed a number of regulated proteins, among them glial fibrilary acidic protein (GFAP). Phase specific up-regulation of GFAP in chronic EAE was confirmed by western blotting and immunohistochemistry. Protein levels of GFAP were also increased in the cerebrospinal fluid of MS patients with specificity for the secondary progressive disease phase. In a next step, proteome profiling of an EAE model with enhanced degenerative mechanisms revealed regulation of alpha-internexin, syntaxin binding protein 1, annexin V and glutamate decarboxylase in the ciliary neurotrophic factor (CNTF) knockout mouse. The identification of these proteins implicate an increased apoptosis and enhanced axonal disintegration and correlate well the described pattern of tissue injury in CNTF −/− mice which involve oligodendrocyte (OL) apoptosis and axonal injury
Gender-Specific Modulation of the Response to Arterial Injury by Soluble Guanylate Cyclase α1
Objective: Soluble guanylate cyclase (sGC), a heterodimer composed of α and β subunits, synthesizes cGMP in response to nitric oxide (NO). NO modulates vascular tone and structure but the relative contributions of cGMP-dependent versus cGMP-independent mechanisms remain uncertain. We studied the response to vascular injury in male (M) and female (F) mice with targeted deletion of exon 6 of the sGCα1 subunit (sGCα1-/-), resulting in a non-functional heterodimer. Methods: We measured aortic cGMP levels and mRNA transcripts encoding sGC α1, α2, and β1 subunits in wild type (WT) and sGCa1-/- mice. To study the response to vascular injury, BrdU-incorporation and neointima formation (maximum intima to media (I/M) ratio) were determined 5 and 28 days after carotid artery ligation, respectively. Results: Aortic cGMP levels were 4-fold higher in F than in M mice in both genotypes, and, within each gender, 4-fold higher in WT than in sGCa1-/-. In contrast, sGCα1, sGCα2, and sGCβ1 mRNA expression did not differ between groups. 3H-thymidine incorporation in cultured sGCa1-/- smooth muscle cells (SMC) was 27%±12% lower than in WT SMC and BrdU-incorporation in carotid arteries 5 days after ligation was significantly less in sGCa1-/- M than in WT M. Neointima area and I/M 28 days after ligation were 65% and 62% lower in sGCa1-/- M than in WT M mice (p<0,05 for both) but were not different in F mice. Conclusion: Functional deletion of sGCa1 resulted in reduced cGMP levels in male sGCa1-/- mice and a gender-specific effect on the adaptive response to vascular injury
Frequent and Recent Human Acquisition of Simian Foamy Viruses Through Apes' Bites in Central Africa
Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. This study aimed at getting better knowledge on SFV transmission dynamics, risk factors for such a zoonotic infection and, searching for intra-familial dissemination and the level of peripheral blood (pro)viral loads in infected individuals. We studied 1,321 people from the general adult population (mean age 49 yrs, 640 women and 681 men) and 198 individuals, mostly men, all of whom had encountered a NHP with a resulting bite or scratch. All of these, either Pygmies (436) or Bantus (1085) live in villages in South Cameroon. A specific SFV Western blot was used and two nested PCRs (polymerase, and LTR) were done on all the positive/borderline samples by serology. In the general population, 2/1,321 (0.2%) persons were found to be infected. In the second group, 37/198 (18.6%) persons were SFV positive. They were mostly infected by apes (37/39) FV (mainly gorilla). Infection by monkey FV was less frequent (2/39). The viral origin of the amplified sequences matched with the history reported by the hunters, most of which (83%) are aged 20 to 40 years and acquired the infection during the last twenty years. The (pro)viral load in 33 individuals infected by a gorilla FV was quite low (<1 to 145 copies per 105 cells) in the peripheral blood leucocytes. Of the 30 wives and 12 children from families of FV infected persons, only one woman was seropositive in WB without subsequent viral DNA amplification. We demonstrate a high level of recent transmission of SFVs to humans in natural settings specifically following severe gorilla bites during hunting activities. The virus was found to persist over several years, with low SFV loads in infected persons. Secondary transmission remains an open question
EUROfusion contributions to ITER nuclear operation
ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and
technological feasibility of fusion as a future energy source. The EUROfusion consortium of
labs within Europe is contributing to the preparation of ITER scientific exploitation and
operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides an
overview of the major progress obtained recently, carried out in the frame of the new (initiated
in 2021) EUROfusion work-package called ‘Preparation of ITER Operation’ (PrIO). The
overview paper is directly supported by the eleven EUROfusion PrIO contributions given at the
29th Fusion Energy Conference (16–21 October 2023) London, UK [www.iaea.org/events/
fec2023]. The paper covers the following topics: (i) development and validation of tools in
support to ITER operation (plasma breakdown/burn-through with evolving plasma volume, new
infra-red synthetic diagnostic for off-line analysis and wall monitoring using Artificial
Intelligence techniques, synthetic diagnostics development, development and exploitation of
multi-machine databases); (ii) R&D for the radio-frequency ITER neutral beam sources leading
to long duration of negative deuterium/hydrogen ions current extraction at ELISE and
participation in the neutral beam test facility with progress on the ITER source SPIDER, and,
the commissioning of the 1 MV high voltage accelerator (MITICA) with lessons learned for
ITER; (iii) validation of neutronic tools for ITER nuclear operation following the second JET
deuterium–tritium experimental campaigns carried out in 2021 and in 2023 (neutron streaming
and shutdown dose rate calculation, water activation and activated corrosion products with
advanced fluid dynamic simulation; irradiation of several materials under 14.1 MeV neutron
flux etc)
- …