7 research outputs found

    Effect of the influenza A (H1N1) live attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in exhaled breath

    Get PDF
    For the 2009 influenza A (H1N1) pandemic, vaccination and infection control were the main modes of prevention. A live attenuated H1N1 vaccine mimics natural infection and works by evoking a host immune response, but currently there are no easy methods to measure such a response. To determine if an immune response could be measured in exhaled breath, exhaled nitric oxide (FE NO) and other exhaled breath volatiles using selected ion flow tube mass spectrometry (SIFT-MS) were measured before and daily for seven days after administering the H1N1 2009 monovalent live intranasal vaccine (FluMist®, MedImmune LLC) in nine healthy healthcare workers (age 35 ± 7 years; five females). On day 3 after H1N1 FluMist® administration there were increases in FENO (MEAN±SEM: day 0 15 ± 3 ppb, day 3 19 ± 3 ppb; p < 0.001) and breath isoprene (MEAN±SEM: day 0 59 ± 15 ppb, day 3 99 ± 17 ppb; p = 0.02). MS analysis identified the greatest number of changes in exhaled breath on day 3 with 137 product ion masses that changed from baseline. The exhaled breath changes on day 3 after H1N1 vaccination may reflect the underlying host immune response. However, further work to elucidate the sources of the exhaled breath changes is necessary

    Breath biomarkers in idiopathic pulmonary fibrosis:A systematic review 11 Medical and Health Sciences

    Get PDF
    Background: Exhaled biomarkers may be related to disease processes in idiopathic pulmonary fibrosis (IPF) however their clinical role remains unclear. We performed a systematic review to investigate whether breath biomarkers discriminate between patients with IPF and healthy controls. We also assessed correlation with lung function, ability to distinguish diagnostic subgroups and change in response to treatment. Methods: MEDLINE, EMBASE and Web of Science databases were searched. Study selection was limited to adults with a diagnosis of IPF as per international guidelines. Results: Of 1014 studies screened, fourteen fulfilled selection criteria and included 257 IPF patients. Twenty individual biomarkers discriminated between IPF and controls and four showed correlation with lung function. Meta-analysis of three studies indicated mean (± SD) alveolar nitric oxide (CalvNO) levels were significantly higher in IPF (8.5 ± 5.5 ppb) than controls (4.4 ± 2.2 ppb). Markers of oxidative stress in exhaled breath condensate, such as hydrogen peroxide and 8-isoprostane, were also discriminatory. Two breathomic studies have isolated discriminative compounds using mass spectrometry. There was a lack of studies assessing relevant treatment and none assessed differences in diagnostic subgroups. Conclusions: Evidence suggests CalvNO is higher in IPF, although studies were limited by small sample size. Further breathomic work may identify biomarkers with diagnostic and prognostic potential

    Clinical applications of breath testing

    No full text
    corecore