318 research outputs found

    Search for Primordial Black Holes with SGARFACE

    Full text link
    The Short GAmma Ray Front Air Cherenkov Experiment (SGARFACE) uses the Whipple 10 m telescope to search for bursts of γ\gamma rays. SGARFACE is sensitive to bursts with duration from a few ns to \sim20 μ\mus and with γ\gamma-ray energy above 100 MeV. SGARFACE began operating in March 2003 and has collected 2.2 million events during an exposure time of 2267 hours. A search for bursts of γ\gamma rays from explosions of primordial black holes (PBH) was carried out. A Hagedorn-type PBH explosion is predicted to be visible within 60 pc of Earth. Background events were caused by cosmic rays and by atmospheric phenomena and their rejection was accomplished to a large extent using the time-resolved images. No unambiguous detection of bursts of γ\gamma rays could be made as the remaining background events mimic the expected shape and time development of bursts. Upper limits on the PBH explosion rate were derived from the SGARFACE data and are compared to previous and future experiments. We note that a future array of large wide-field air-Cherenkov telescopes equipped with a SGARFACE-like trigger would be able to operate background-free with a 20 to 30 times higher sensitivity for PBH explosions.Comment: 18 pages, 30 figures, accepted by Astroparticle Physics, corrected author list and Section 2.

    The form of cosmic string cusps

    Get PDF
    We classify the possible shapes of cosmic string cusps and how they transform under Lorentz boosts. A generic cusp can be brought into a form in which the motion of the cusp tip lies in the plane of the cusp. The cusp whose motion is perpendicular to this plane, considered by some authors, is a special case and not the generic situation. We redo the calculation of the energy in the region where the string overlaps itself near a cusp, which is the maximum energy that can be released in radiation. We take into account the motion of a generic cusp and the resulting Lorentz contraction of the string core. The result is that the energy scales as rL\sqrt {rL} instead of the usual value of r1/3L2/3r^{1/3} L^{2/3}, where rr is the string radius and LL and is the typical length scale of the string. Since r<<Lr << L for cosmological strings, the radiation is strongly suppressed and could not be observed.Comment: 15 pages, ReVTex, 2 postscript figures with eps

    Sum Rules for Magnetic Moments and Polarizabilities in QED and Chiral Effective-Field Theory

    Get PDF
    We elaborate on a recently proposed extension of the Gerasimov-Drell-Hearn (GDH) sum rule which is achieved by taking derivatives with respect to the anomalous magnetic moment. The new sum rule features a {\it linear} relation between the anomalous magnetic moment and the dispersion integral over a cross-section quantity. We find some analogy of the linearized form of the GDH sum rule with the `sideways dispersion relations'. As an example, we apply the linear sum rule to reproduce the famous Schwinger's correction to the magnetic moment in QED from a tree-level cross-section calculation and outline the procedure for computing the two-loop correction from a one-loop cross-section calculation. The polarizabilities of the electron in QED are considered as well by using the other forward-Compton-scattering sum rules. We also employ the sum rules to study the magnetic moment and polarizabilities of the nucleon in a relativistic chiral EFT framework. In particular we investigate the chiral extrapolation of these quantities.Comment: 24 pages, 7 figures; several additions, published versio

    Cosmic Rays From Cosmic Strings

    Full text link
    It has been speculated that cosmic string networks could produce ultra-high energy cosmic rays as a by-product of their evolution. By making use of recent work on the evolution of such networks, it will be shown that the flux of cosmic rays from cosmologically useful, that is GUT scale strings, is too small to be used as a test for strings with any foreseeable technology.Comment: 11, Imperial/TP/93-94/2

    Accretion, Primordial Black Holes and Standard Cosmology

    Full text link
    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.Comment: 11 pages, 3 figure

    Field theory simulation of Abelian-Higgs cosmic string cusps

    Get PDF
    We have performed a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The radius of the string cores which must touch to produce the evaporation is approximately r=1r = 1 in natural units. In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps

    No effect of an oleoylethanolamide-related phospholipid on satiety and energy intake: a randomised controlled trial of phosphatidylethanolamine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphatidylethanolamine (PE) is a phospholipid which is biosynthesized into long chain N-acylethanolamines (NAEs) including oleoylethanolamide (OEA), a known inhibitor of food intake. The aim of this study was to investigate whether PE-containing lipids can also inhibit intake. This was a 4 treatment intervention where 18 male participants were given a high-fat test breakfast (2.5MJ, 53 en% fat) containing (i) high-phospholipid, high-PE lipid (ii) high-phospholipid, medium-PE lipid (iii) no-phospholipid, no-PE control lipid or (iv) water control, in a randomised cross-over. Visual analogue scales (VAS) were used to assess post-ingestive hunger and satiety, and energy intake (EI) was measured at an ad libitum lunch meal after 3.5hours.</p> <p>Results</p> <p>When compared with the water control, the 3 lipid treatments resulted in lower levels of hunger and thoughts of food, greater fullness and satisfaction (all, treatment*time interaction, P<0.001), and a lower EI (P<0.05). However, there was no difference in any of the VAS measures when the 2 PE lipid treatments were compared with no-PE control lipid, nor when medium-PE was compared with high-PE. Unexpectedly participants ate significantly more energy at the lunch meal when the 2 PE lipid treatments (medium-PE:5406 kJ, 334 sem; high-PE:5288 kJ, 244 sem) were compared with the no-PE control lipid (5072 kJ, 262 sem, P<0.05), although there was no dose effect between the medium- and high-PE treatments.</p> <p>Conclusion</p> <p>Despite the close relationship of PE with OEA, there was no evidence from this acute study that dietary phospholipids containing PE can favourably modify eating behaviour.</p

    Evolution of Primordial Black Hole Mass Spectrum in Brans-Dicke Theory

    Full text link
    We investigate the evolution of primordial black hole mass spectrum by including both accretion of radiation and Hawking evaporation within Brans-Dicke cosmology in radiation, matter and vacuum-dominated eras. We also consider the effect of evaporation of primordial black holes on the expansion dynamics of the universe. The analytic solutions describing the energy density of the black holes in equilibrium with radiation are presented. We demonstrate that these solutions act as attractors for the system ensuring stability for both linear and nonlinear situations. We show, however, that inclusion of accretion of radiation delays the onset of this equilibrium in all radiation, matter and vacuum-dominated eras.Comment: 18 pages, one figur

    Effects of friction on cosmic strings

    Full text link
    We study the evolution of cosmic strings taking into account the frictional force due to the surrounding radiation. We consider small perturbations on straight strings, oscillation of circular loops and small perturbations on circular loops. For straight strings, friction exponentially suppresses perturbations whose co-moving scale crosses the horizon before cosmological time tμ2t_*\sim \mu^{-2} (in Planck units), where μ\mu is the string tension. Loops with size much smaller than tt_* will be approximately circular at the time when they start the relativistic collapse. We investigate the possibility that such loops will form black holes. We find that the number of black holes which are formed through this process is well bellow present observational limits, so this does not give any lower or upper bounds on μ\mu. We also consider the case of straight strings attached to walls and circular holes that can spontaneously nucleate on metastable domain walls.Comment: 32 pages, TUTP-93-
    corecore