220 research outputs found

    Attosecond time-resolved photoelectron holography

    Get PDF
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography—all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds

    Attosecond control of electron dynamics in carbon monoxide

    Full text link
    Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond timescales. We present experimental and theoretical results on the steering of electronic motion in a multi-electron system. A very high degree of light-waveform control over the directional emission of C+ and O+ fragments from the dissociative ionization of CO was observed. Ab initio based model calculations reveal contributions to the control related to the ionization and laser-induced population transfer between excited electronic states of CO+ during dissociation

    Ultrafast modulation of electronic structure by coherent phonon excitations

    Get PDF
    Femtosecond x-ray absorption spectroscopy with a laser-driven high-harmonic source is used to map ultrafast changes of x-ray absorption by femtometer- scale coherent phonon displacements. In LiBH4, displacements along an Ag phonon mode at 10 THz are induced by impulsive Raman excitation and give rise to oscillatory changes of x-ray absorption at the Li K edge. Electron density maps from femtosecond x-ray diffraction data show that the electric field of the pump pulse induces a charge transfer from the BH4− to neighboring Li+ ions, resulting in a differential Coulomb force that drives lattice vibrations in this virtual transition state

    Wave Function Microscopy of Quasibound Atomic States

    Get PDF
    In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and Ostrovsky proposed an experiment based on the projection of slow electrons emitted by a photoionized atom onto a position-sensitive detector. In the case of resonant excitation, they predicted that the spatial electron distribution on the detector should represent nothing else but a magnified image of the projection of a quasibound electronic state. By exciting lithium atoms in the presence of a static electric field, we present in this Letter the first experimental photoionization wave function microscopy images where signatures of quasibound states are evident. Characteristic resonant features, such as (i) the abrupt change of the number of wave function nodes across a resonance and (ii) the broadening of the outer ring of the image (associated with tunneling ionization), are observed and interpreted via wave packet propagation simulations and recently proposed resonance tunneling mechanisms. The electron spatial distribution measured by our microscope is a direct macroscopic image of the projection of the microscopic squared modulus of the electron wave that is quasibound to the atom and constitutes the first experimental realization of the experiment proposed 30 years ago

    Wave-function imaging of quasibound and continuum Stark states

    Get PDF
    Photoionization of an atom in the presence of a uniform static electric field provides the unique opportunity to expand and visualize the atomic wave function at a macroscopic scale. In a number of seminal publications dating back to the 1980s, Fabrikant, Demkov, Kondratovich, and Ostrovsky showed that this goal could be achieved by projecting slow (meV) photoionized electrons onto a position-sensitive detector and underlined the distinction between continuum and resonant contributions. The uncovering of resonant signatures was achieved fairly recently in experiments on the nonhydrogenic lithium atoms [Cohen et al., Phys. Rev. Lett. 110, 183001 (2013)]. The purpose of the present article is the general description of these findings, with emphasis on the various manifestations of resonant character. From this point of view, lithium has been chosen as an illustrative example between the two limiting cases of hydrogen, where resonance effects are more easily identified, and heavy atoms like xenon, where resonant effects were not observed

    Attosecond investigation of extreme-ultraviolet multi-photon multi-electron ionization

    Get PDF
    Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond time scales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously allowed the time-resolved investigation of two-photon, two-electron interactions. Here we study double and triple ionization of argon atoms involving the absorption of up to five XUV photons using a pair of intense attosecond pulse trains (APTs). By varying the time delay between the two APTs with attosecond precision and the spatial overlap with nanometer precision, we obtain information on complex nonlinear multi-photon ionization pathways. Our experimental and numerical results show that Ar2+ is predominantly formed by a sequential two-photon process, whereas the delay dependence of the Ar3+ ion yield exhibits clear signatures of the involvement of a simultaneous two-photon absorption process. Our experiment suggests that it is possible to investigate multi-electron dynamics using attosecond pulses for both pumping and probing the dynamics

    Extended Gaussian wave packet dynamics

    Get PDF
    We examine an extension to the theory of Gaussian wave packet dynamics in a one-dimensional potential by means of a sequence of time dependent displacement and squeezing transformations. Exact expressions for the quantum dynamics are found, and relationships are explored between the squeezed system, Gaussian wave packet dynamics, the time dependent harmonic oscillator, and wave packet dynamics in a Gauss-Hermite basis. Expressions are given for the matrix elements of the potential in some simple cases. Several examples are given, including the propagation of a non-Gaussian initial state in a Morse potential

    Attosecond investigation of extreme-ultraviolet multi-photon multi-electron ionization

    Get PDF
    Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond time scales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously allowed the time-resolved investigation of two-photon, two-electron interactions. Here we study double and triple ionization of argon atoms involving the absorption of up to five XUV photons using a pair of intense attosecond pulse trains (APTs). By varying the time delay between the two APTs with attosecond precision and the spatial overlap with nanometer precision, we obtain information on complex nonlinear multi-photon ionization pathways. Our experimental and numerical results show that Ar2+ is predominantly formed by a sequential two-photon process, whereas the delay dependence of the Ar3+ ion yield exhibits clear signatures of the involvement of a simultaneous two-photon absorption process. Our experiment suggests that it is possible to investigate multi-electron dynamics using attosecond pulses for both pumping and probing the dynamics
    • 

    corecore