research

Ultrafast modulation of electronic structure by coherent phonon excitations

Abstract

Femtosecond x-ray absorption spectroscopy with a laser-driven high-harmonic source is used to map ultrafast changes of x-ray absorption by femtometer- scale coherent phonon displacements. In LiBH4, displacements along an Ag phonon mode at 10 THz are induced by impulsive Raman excitation and give rise to oscillatory changes of x-ray absorption at the Li K edge. Electron density maps from femtosecond x-ray diffraction data show that the electric field of the pump pulse induces a charge transfer from the BH4− to neighboring Li+ ions, resulting in a differential Coulomb force that drives lattice vibrations in this virtual transition state

    Similar works