26 research outputs found

    A Magnetic Resonance Realization of Decoherence-Free Quantum Computation

    Full text link
    We report the realization, using nuclear magnetic resonance techniques, of the first quantum computer that reliably executes an algorithm in the presence of strong decoherence. The computer is based on a quantum error avoidance code that protects against a class of multiple-qubit errors. The code stores two decoherence-free logical qubits in four noisy physical qubits. The computer successfully executes Grover's search algorithm in the presence of arbitrarily strong engineered decoherence. A control computer with no decoherence protection consistently fails under the same conditions.Comment: 5 pages with 3 figures, revtex4, accepted by Physical Review Letters; v2 minor revisions to conten

    Fetching marked items from an unsorted database in NMR ensemble computing

    Full text link
    Searching a marked item or several marked items from an unsorted database is a very difficult mathematical problem. Using classical computer, it requires O(N=2n)O(N=2^n) steps to find the target. Using a quantum computer, Grover's algorithm uses O(N=2n)O(\sqrt{N=2^n}) steps. In NMR ensemble computing, Brushweiler's algorithm uses logN\log N steps. In this Letter, we propose an algorithm that fetches marked items in an unsorted database directly. It requires only a single query. It can find a single marked item or multiple number of items.Comment: 4 pages and 1 figur

    “This is not life, this is just vegetation” — Lived experiences of long-term care in Europe's largest psychiatric home

    Get PDF
    Purpose: Understanding the experiences of long-term care (LTC) may help to improve care by assisting mental health professionals and allowing mental health policies to be customized more effectively. Design and Methods: Semistructured interviews were analyzed using interpretative phenomenological analysis (IPA). Findings: Three main themes emerged as a result: 1. Perception of selves, 2. Experience and representation of the institution, 3. Maintenance of safe spaces. Practice Implications: Communication with patients, investigation of their identity processes, and relationship toward their past and present self during LTC might aid in well-being and sense of congruency in their identities. Nurses should encourage patients to keep connected with their memories and past selves through different activities. © 2021 The Authors. Perspectives in Psychiatric Care published by Wiley Periodicals LL

    Rapid solution of problems by nuclear-magnetic-resonance quantum computation

    Get PDF
    We offer an improved method for using a nuclear-magnetic-resonance quantum computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the application of the NMRQC are exponential diminishment of density-matrix elements with the number of bits, threatening weak signal levels, and the high cost of preparing a suitable starting state. A third obstacle is a heretofore unnoticed restriction on measurement operators available for use by an NMRQC. Variations on the function classes of the Deutsch-Jozsa problem are introduced, both to extend the range of problems advantageous for quantum computation and to escape all three obstacles to use of an NMRQC. By adapting it to one such function class, the Deutsch-Jozsa problem is made solvable without exponential loss of signal. The method involves an extra work bit and a polynomially more involved Oracle; it uses the thermal-equilibrium density matrix systematically for an arbitrary number of spins, thereby avoiding both the preparation of a pseudopure state and temporal averaging.Comment: 19 page

    Quantum dynamics under coherent and incoherent effects of a spin bath in the Keldysh formalism: application to a spin swapping operation

    Full text link
    We develop the Keldysh formalism for the polarization dynamics of an open spin system. We apply it to the swapping between two qubit states in a model describing an NMR cross-polarization experiment. The environment is a set of interacting spins. For fast fluctuations in the environment, the analytical solution shows effects missed by the secular approximation of the Quantum Master Equation for the density matrix: a frequency decrease depending on the system-environment escape rate and the quantum quadratic short time behavior. Considering full memory of the bath correlations yields a progressive change of the swapping frequency.Comment: 16 pages, 3 figures, final for

    Being on the track of Thimerosal. Review

    No full text
    The common preservative thimerosal is one of the most important organic mercury compounds human populations are exposed to. It has toxic effect on several cell lines, and it also induces programmed cell death in in vitro experiments. Association is suggested between application of thimerosal-containing vaccines and the occurrence of neurodevelopmental disorders, like autism. While specific recommendations were made to eliminate thimerosal from vaccines, consistent evidence is still lacking for an association of exposure and disease. Unfortunately, it is very hard to study the molecular background of complex human diseases directly; however, investigations on more simple model organisms may lead to a better understanding of thimerosal as a possible disease inducing factor
    corecore