352 research outputs found

    Holomorphic Bloch spaces on the unit ball in CnC^n

    Get PDF
    summary:This work is an introduction to anisotropic spaces of holomorphic functions, which have ω\omega-weight and are generalizations of Bloch spaces on a unit ball. We describe the holomorphic Bloch space in terms of the corresponding Lω∞L_\omega ^\infty space. We establish a description of (Ap(ω))∗(A^p(\omega ))^* via the Bloch classes for all 0<p≀10<p\leq 1

    A proof of uniqueness of the Gurarii space

    Full text link
    We present a short and elementary proof of isometric uniqueness of the Gurarii space.Comment: 6 pages, some improvements incorporate

    A note on completeness of weighted normed spaces of analytic functions

    Full text link
    [EN] Given a non-negative weight v, not necessarily bounded or strictly positive, defined on a domain G in the complex plane, we consider the weighted space H-v(infinity) (G)of all holomorphic functions on G such that the product v vertical bar f vertical bar is bounded in G and study the question of when such a space is complete under the canonical sup-seminorm. We obtain both some necessary and some sufficient conditions in terms of the weight v, exhibit several relevant examples, and characterize completeness in the case of spaces with radial weights on balanced domains.The first author was partially supported by MTM2013-43540-P and MTM2016-76647-P by MINECO/FEDER-EU and GVA Prometeo II/2013/013. The second author was partially supported by the MINECO/FEDER-EU Grant MTM2015-65792-P. Both authors were partially supported by Thematic Research Network MTM2015-69323-REDT, MINECO, Spain.Bonet Solves, JA.; Vukotic, D. (2017). A note on completeness of weighted normed spaces of analytic functions. Results in Mathematics. 72(1-2):263-279. https://doi.org/10.1007/s00025-017-0696-2S263279721-2Arcozzi, N., Björn, A.: Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces. Math. Proc. R. Ir. Acad. 102A, 175–192 (2002)Berenstein, C.A., Gay, R.: Complex Variables, An Introduction. Springer, New York (1991)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998)Björn, A.: Removable singularities for weighted Bergman spaces. Czechoslov. Math. J. 56, 179–227 (2006)Bonet, J., DomaƄski, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139–148 (1999)Bonet, J., Vogt, D.: Weighted spaces of holomorphic functions and sequence spaces. Note Mat. 17, 87–97 (1997)Conway, J.B.: Functions of One Complex Variable, Second Edition, Graduate Texts in Mathematics, vol. 11. Springer, New York (1978)Gaier, D.: Lectures on Complex Approximation. BirkhĂ€user, Boston (1987)Grosse-Erdmann, K.-G.: A weak criterion for vector-valued holomorphic functions. Math. Proc. Camb. Philos. Soc. 136, 399–411 (2004)Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam (1979)HorvĂĄth, J.: Topological Vector Spaces and Distributions. Addison-Wesley, Reading (1966)Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175, 19–45 (2006)Nakazi, T.: Weighted Bloch spaces which are Banach spaces. Rend. Circ. Mat. Palermo 62, 427–440 (2013)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971

    Superposition operators between weighted Banach spaces of analytic functions of controlled growth

    Full text link
    The final publication is available at Springer via: http://dx.doi.org/10.1007/s00605-012-0441-6[EN] We characterize the entire functions which transform a weighted Banach space of holomorphic functions on the disc of type H∞ into another such space by superposition. We also show that all the superposition operators induced by such entire functions map bounded sets into bounded sets and are continuous. Superposition operators that map bounded sets into relatively compact sets are also considered. © 2012 Springer-Verlag Wien.The research of Bonet was partially supported by MICINN and FEDER Project MTM2010-15200, by GV project Prometeo/2008/101, and by ACOMP/2012/090. The research of Vukotic was partially supported by MICINN grant MTM2009-14694-C02-01, Spain and by the European ESF Network HCAA ("Harmonic and Complex Analysis and Its Applications").Bonet Solves, JA.; Vukotić, D. (2013). Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Monatshefte fĂŒr Mathematik. 170(3-4):311-323. https://doi.org/10.1007/s00605-012-0441-6S3113231703-4Álvarez, V., MĂĄrquez, M.A., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205–216 (2004)Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators, Cambridge Tracts in Mathematics 95. Cambridge University Press, London (1990)Appell, J., Zabrejko, P.P.: Remarks on the superposition operator problem in various function spaces. Complex Var. Elliptic Equ. 55(8–10), 727–737 (2010)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)Bonet, J., DomaƄski, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139–148 (1999)Bonet, J., DomaƄski, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 64, 101–118 (1998)Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. Preprint (2011)Boyd, C., Rueda, P.: Superposition operators between weighted spaces of analytic functions. Preprint (2011)Buckley, S.M., FernĂĄndez, J.L., Vukotić, D.: Superposition operators on Dirichlet type spaces. In: Papers on Analysis: A Volume dedicaed to Olli Martio on the occasion of his 60th birthday. Rep. Univ. JyvĂ€skyla Dept. Math. Stat, vol. 83, pp. 41–61. Univ. JyvĂ€skyla, JyvĂ€skyla (2001)Buckley, S.M., Vukotić, D.: Univalent interpolation in Besov spaces and superposition into Bergman spaces. Potential Anal. 29(1), 1–16 (2008)CĂĄmera, G.A.: Nonlinear superposition on spaces of analytic functions. In: Harmonic Analysis and Operator Theory (CarĂĄcas, 1994), Contemp. Math, vol. 189, pp. 103–116. Am. Math. Soc, Providence (1995)CĂĄmera, G.A., GimĂ©nez, J.: The nonlinear superposition operators acting on Bergman spaces. Compositio Math. 93, 23–35 (1994)Castillo, R.E., Ramos FernĂĄndez, J.C., Salazar, M.: Bounded superposition operators between Bloch-Orlicz and α\alpha -Bloch spaces. Appl. Math. Comp. 218, 3441–3450 (2011)Dineen, S.: Complex Analysis in Locally Convex Spaces, vol. 57. North-Holland Math. Studies, Amsterdam (1981)Girela, D., MĂĄrquez, M.A.: Superposition operators between QpQ_p spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010)Grosse-Erdmann, K.-G.: A weak criterion for vector-valued holomorphic functions. Math. Proc. Camb. Publ. Soc. 136, 399–41 (2004)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Langenbruch, M.: Continuation of Gevrey regularity for solutions of partial differential operators. In: Functional Analysis (Trier, 1994), pp. 249–280. de Gruyter, Berlin (1996)Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150, Amer. Math. Soc., Providence (1996).Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006)Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)Ramos FernĂĄndez, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Preprint, Available from http://arxiv.org/abs/1203.5857Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Vukotić, D.: Integrability, growth of conformal maps, and superposition operators, Technical Report 10. Aristotle University of Thessaloniki, Department of Mathematics (2004)Xiong, C.: Superposition operators between QpQ_p spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935–938 (2005)Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501–507 (2007)Zhu, K.: Operator Theory in Function Spaces, 2nd edn. Am. Math. Soc., Providence (2007

    Weighted Banach spaces of harmonic functions

    Full text link
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s13398-012-0109-z."We study Banach spaces of harmonic functions on open sets of or endowed with weighted supremum norms. We investigate the harmonic associated weight defined naturally as the analogue of the holomorphic associated weight introduced by Bierstedt, Bonet, and Taskinen and we compare them. We study composition operators with holomorphic symbol between weighted Banach spaces of pluriharmonic functions characterizing the continuity, the compactness and the essential norm of composition operators among these spaces in terms of associated weights.The research of the first author was partially supported by MEC and FEDER Project MTM2010-15200 and by GV project ACOMP/2012/090.Jorda Mora, E.; Zarco GarcĂ­a, AM. (2014). Weighted Banach spaces of harmonic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 108(2):405-418. https://doi.org/10.1007/s13398-012-0109-zS4054181082Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, Berlin (2001)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Mich. Math. J. 40(2), 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127(2), 137–168 (1998)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70–79 (1993)Bonet, J., DomaƄski, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139–148 (1999)Bonet, J., DomaƄski, P., Lindström, M.: Weakly compact composition operators on weighted vector-valued Banach spaces of analytic mappings. Ann. Acad. Sci. Fenn. Math. Ser. A I 26, 233–248 (2001)Bonet, J., DomaƄski, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 64, 101–118 (1998)Bonet, J., Friz, M., JordĂĄ, E.: Composition operators between weighted inductive limits of spaces of holomorphic functions. Publ. Math. Debr. Ser. A 67, 333–348 (2005)Boyd, C., Rueda, P.: The v-boundary of weighted spaces of holomorphic functions. Ann. Acad. Sci. Fenn. Math. 30, 337–352 (2005)Boyd, C., Rueda, P.: Complete weights and v-peak points of spaces of weighted holomorphic functions. Isr. J. Math. 155, 57–80 (2006)Boyd, C., Rueda, P.: Isometries of weighted spaces of harmonic functions. Potential Anal. 29(1), 37–48 (2008)Carando, D., Sevilla-Peris, P.: Spectra of weighted algebras of holomorphic functions. Math. Z. 263, 887–902 (2009)Contreras, M.D., HernĂĄndez-DĂ­az, G.: Weighted composition operators in weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 69(1), 41–60 (2000)GarcĂ­a, D., Maestre, M., Rueda, P.: Weighted spaces of holomorphic functions on Banach spaces. Stud. Math. 138(1), 1–24 (2000)GarcĂ­a, D., Maestre, M., Sevilla-Peris, P.: Composition operators between weighted spaces of holomorphic functions on Banach spaces. Ann. Acad. Sci. Fenn. Math. 29, 81–98 (2004)Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. AMS Chelsea Publishing, Providence (2009)Hoffman, K.: Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs (1962)Krantz, S.G.: Function Theory of Several Complex Variables. AMS, Providence (2001)Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309–320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175(1), 19–45 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, Oxford (1997)Montes-RodrĂ­guez, A.: Weight composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(2), 872–884 (2000)Ng, K.F.: On a theorem of Diximier. Math. Scand. 29, 279–280 (1972)Rudin, W.: Real and Complex Analysis. MacGraw-Hill, NY (1970)Rudin, W.: Functional analysis. In: International series in pure and applied mathematics, 2nd edn. McGraw-Hill, Inc., New York (1991)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299(300), 256–279 (1978)Shields, A.L., Williams, D.L.: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29, 3–25 (1982)Zheng, L.: The essential norms and spectra of composition operators on H∞H^\infty . Pac. J. Math. 203(2), 503–510 (2002

    Late Mesozoic marine Antarctic fishes: future perspectives based on the newly collections recovered in the Ameghino and Lopez de Bertodano Formations

    Get PDF
    Nowadays, notothenioids are the teleostean group that dominates marine Antarctic waters. However, during the Mesozoic a diverse ichthyofauna inhabited the sea that surrounded Antarctic. We present the preliminary results of the last two Argentinian Antarctic field expedition to the Late Jurassic of Antactic Peninsula (Longing Gape) and Cretaceous-Paleogene of Seymour (=Marambio) Island. The fish material recovered is extremely abundant and their further detailed study may provide significant clues into the taxonomy and paleobiogeography of the mesozoic antactic ichthyofaĂșnas.Facultad de Ciencias Naturales y Museo (FCNM

    Norm-attaining weighted composition operators on weighted Banach spaces of analytic functions

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00013-012-0458-zWe investigate weighted composition operators that attain their norm on weighted Banach spaces of holomorphic functions on the unit disc of type H∞. Applications for composition operators on weighted Bloch spaces are given. © 2012 Springer Basel.1. The authors are thankful to the referee for pointing to us the references [15] and [16] and their relevance in the present research. 2. The research of Bonet was partially supported by MICINN and FEDER Project MTM2010-15200 and by GV project Prometeo/2008/101 and project ACOMP/2012/090.Bonet Solves, JA.; Lindström, M.; Wolf, E. (2012). Norm-attaining weighted composition operators on weighted Banach spaces of analytic functions. Archiv der Mathematik. 99(6):537-546. https://doi.org/10.1007/s00013-012-0458-zS537546996Bierstedt K.D., Bonet J., Galbis A.: Weighted spaces of holomorphic functions on bounded domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt K.D., Bonet J., Taskinen J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)J. Bonet, P. DomaƄski, and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Canad, Math. Bull. 42, no. 2, (1999), 139–148Bonet J. et al.: Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 64, 101–118 (1998)Bonet J., Lindström M, Wolf E.: Isometric weighted composition operators on weighted Banach spaces of type H ∞. Proc. Amer. Math. Soc. 136, 4267–4273 (2008)Bonet J, Wolf E.: A note on weighted spaces of holomorphic functions. Archiv Math. 81, 650–654 (2003)Contreras M.D, HernĂĄndez-DĂ­az A.G.: Weighted composition operators in weighted banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 69, 41–60 (2000)Cowen C., MacCluer B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)J. Diestel, Geometry of Banach Spaces. Selected Topics, Lecture Notes in Math. vol. 485, Springer, Berlin, 1975.Hammond C.: On the norm of a composition operator with linear fractional symbol. Acta Sci. Math. (Szeged) 69, 813–829 (2003)Hosokawa T., Izuchi K., Zheng D.: Isolated points and essential components of composition operators on H ∞. Proc. Amer. Math. Soc. 130, 1765–1773 (2001)Hosokava T., Ohno S.: Topological strusctures of the sets of composition operatorson the Bloch spaces. J. Math. anal. Appl. 303, 499–508 (2005)Lusky W.: On the isomorphy classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006)MartĂ­n M.: Norm-attaining composition operators on the Bloch spaces. J. Math. Anal. Appl. 369, 15–21 (2010)A. Montes-RodrĂ­guez, The Pick-Schwarz lemma and composition operators on Bloch spaces, International Workshop on Operator Theory (Cefalu, 1997), Rend. Circ. Mat. Palermo (2) Suppl. 56 (1998), 167–170.Montes-RodrĂ­guez A.: The essential norm of a composition operator on Bloch spaces. Pacific J. Math. 188, 339–351 (1999)Montes-RodrĂ­guez A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. London Math. Soc. 61, 872–884 (2000)J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.K. Zhu, Operator Theory in Function Spaces, Second Edition. Amer. Math. Soc., 2007

    The CesĂ ro operator on Korenblum type spaces of analytic functions

    Get PDF
    [EN] The spectrum of the CesA ro operator , which is always continuous (but never compact) when acting on the classical Korenblum space and other related weighted Fr,chet or (LB) spaces of analytic functions on the open unit disc, is completely determined. It turns out that such spaces are always Schwartz but, with the exception of the Korenblum space, never nuclear. Some consequences concerning the mean ergodicity of are deduced.The research of the first two authors was partially supported by the projects MTM2013-43540-P and MTM2016-76647-P. The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.Albanese, A.; Bonet Solves, JA.; Ricker, WJ. (2018). The CesĂ ro operator on Korenblum type spaces of analytic functions. Collectanea mathematica. 69(2):263-281. https://doi.org/10.1007/s13348-017-0205-7S263281692Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in FrĂ©chet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)Albanese, A.A., Bonet, J., Ricker, W.J.: The CesĂ ro operator in growth Banach spaces of analytic functions. Integral Equ. Oper. Theory 86, 97–112 (2016)Albanese, A.A., Bonet, J., Ricker, W.J.: The CesĂ ro operator in the FrĂ©chet spaces ℓp+\ell ^{p+} ℓ p + and Lp−L^{p-} L p - . Glasgow Math. J. 59, 273–287 (2017)Albanese, A.A., Bonet, J., Ricker, W.J.: The CesĂ ro operator on power series spaces. Stud. Math. doi: 10.4064/sm8590-2-2017Aleman, A.: A class of integral operators on spaces of analytic functions, In: Proceedings of the Winter School in Operator Theory and Complex Analysis, Univ. MĂĄlaga Secr. Publ., MĂĄlaga, pp. 3–30 (2007)Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)Aleman, A., PelĂĄez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ. Math. J. 61, 1–19 (2012)Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized CesĂ ro operators. J. Funct. Anal. 258, 67–98 (2010)Aleman, A., Siskakis, A.G.: An integral operator on HpH^p H p . Complex Var. Theory Appl. 28, 149–158 (1995)Aleman, A., Siskakis, A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)Barrett, D.E.: Duality between A∞A^\infty A ∞ and A−∞A^{- \infty } A - ∞ on domains with nondegenerate corners, Multivariable operator theory (Seattle, WA, 1993), pp. 77–87, Contemporary Math. Vol. 185, Amer. Math. Soc., Providence (1995)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998)Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272, 107–160 (1982)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 54, 70–79 (1993)Bonet, J., DomaƄski, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 64, 101–118 (1998)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)Domenig, T.: Composition operators on weighted Bergman spaces and Hardy spaces. Atomic Decompositions and Diagonal Operators, Ph.D. Thesis, University of ZĂŒrich (1997). [Zbl 0909.47025]Domenig, T.: Composition operators belonging to operator ideals. J. Math. Anal. Appl. 237, 327–349 (1999)Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. 2nd Printing. Wiley Interscience Publ., New York (1964)Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York, Chicago San Francisco (1965)Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000)Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175(1), 19–40 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Melikhov, S.N.: (DFS )-spaces of holomorphic functions invariant under differentiation. J. Math. Anal. Appl. 297, 577–586 (2004)Persson, A.-M.: On the spectrum of the CesĂ ro operator on spaces of analytic functions. J. Math. Anal Appl. 340, 1180–1203 (2008)Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Siskakis, A.: Volterra operators on spaces of analytic functions—a survey. In: Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, pp. 51–68 (2006

    The CesĂ ro operator in growth Banach spaces of analytic functions

    Full text link
    [EN] The CesA ro operator C, when acting in the classical growth Banach spaces and , for , of analytic functions on , is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on which C maps into (resp. into ); this optimal domain space always contains (resp. ) as a proper subspace.The research of the first two authors was partially supported by the projects MTM2013-43540-P and GVA Prometeo II/2013/013.Albanese, A.; Bonet Solves, JA.; Ricker, WJ. (2016). The CesĂ ro operator in growth Banach spaces of analytic functions. Integral Equations and Operator Theory. 86(1):97-112. https://doi.org/10.1007/s00020-016-2316-zS97112861Albanese A.A., Bonet J., Ricker W.J.: Convergence of arithmetic means of operators in FrĂ©chet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)Albanese, A.A., Bonet, J.,Ricker, W.J.: The CesĂ ro operator on power series spaces. Preprint (2016)Albrecht E., Miller T.L., Neumann M.M.: Spectral properties of generalized CesĂ ro operators on Hardy and weighted Bergman spaces. Archiv Math. 85, 446–459 (2005)Aleman A.: A class of integral operators on spaces of analytic functions. In: Proc. of the Winter School in Operator Theory and Complex Analysis, Univ. MĂĄlaga Secr. Publ., MĂĄlaga, pp. 3–30 (2007)Aleman A., Constantin O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)Aleman A., Persson A.-M.: Resolvent estimates and decomposable extensions of generalized CesĂ ro operators. J. Funct. Anal. 258, 67–98 (2010)Aleman A., Siskakis A.G.: An integral operator on H p . Complex Var. Theory Appl. 28, 149–158 (1995)Aleman A., Siskakis A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)Bayart F., Matheron E.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)Bierstedt K.D., Bonet J., Galbis A.: Weighted spaces of holomorphic functions on balanced domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt K.D., Bonet J., Taskinen J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. 54, 70–79 (1993)Bonet J., Domanski P., Lindström M.: Essential norm and weak compactness on weighted Banach spaces of analytic functions. Can. Math. Bull. 42, 139–148 (1999)Curbera G.P., Ricker W.J.: Extensions of the classical CesĂ ro operator on Hardy spaces. Math. Scand. 108, 279–290 (2011)Danikas N., Siskakis A.: The CesĂ ro operator on bounded analytic functions. Analysis 13, 295–299 (1993)Duren P.: Theory of H p Spaces. Academic Press, New York (1970)Dunford N., Schwartz J.T.:Linear Operators I: General Theory, 2nd Printing. Wiley Interscience Publ., New York (1964)Grosse-Erdmann K., Peris A.: Linear Chaos. Springer, London (2011)Harutyunyan A., Lusky W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Hedenmalm H., Korenblum B., Zhu K.: Theory of Bergman Spaces. Grad. Texts in Math., vol. 199. Springer, New York (2000)Katzelson Y., Tzafriri L.: On power bounded operators. J. Funct. Anal. 68, 313–328 (1968)Krengel U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Lin M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)Lusky W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175(1), 19–40 (2006)Megginson R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Persson A.-M.: On the spectrum of the CesĂ ro operator on spaces of analytic functions. J. Math. Anal. Appl. 340, 1180–1203 (2008)Rubel L.A., Shields A.L.: The second dual of certain spaces of analytic functions. J. Aust. Math. Soc. 11, 276–280 (1970)Shields A.L., Williams D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Siskakis A.: Volterra operators on spaces of analytic functions—a survey. In: Proc. of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, pp. 51–68 (2006
    • 

    corecore