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Holomorphic Bloch spaces on the unit ball in C"

A.V. HARUTYUNYAN, W. LUSKY

Abstract. This work is an introduction to anisotropic spaces of holomorphic func-
tions, which have w-weight and are generalizations of Bloch spaces on a unit
ball. We describe the holomorphic Bloch space in terms of the corresponding
L space. We establish a description of (AP(w))* via the Bloch classes for all
0<p<1

Keywords: weighted Bloch spaces, projection, inverse mapping, dual space

Classification: 32A18, 46E15

1. Introduction and basic constructions

Let C™ be the n-dimensional complex Euclidean space. For z = (z1,...,25),
¢=(¢1,---,¢) in C™ we define the inner product as follows:

<27<> = 2121 +-F ZnZn

We write also: |z] = /212 + - + |z |%

Let B™ = {z € C™, |z| < 1} be the unit ball in C™ and let S™ = {z € C", |z| =
1} be the boundary of B™. We denote by H(B™) the set of holomorphic functions
on B™ and by H>(B™) the set of bounded holomorphic functions on B™.

Let f € H(B"), then f(z) =), amz™ (2 € B™), where the summation is over
all multi-indices m = (mq, ..., my), each my is a nonnegative integer and 2™ =
21y Putting fio(2) = 32, 2, am2™ for each k > 0, |m| =my + -+ - + mn,
then the Taylor series of f has the following form

M) 1) =3 f(2)
k=0

which is called the homogeneous expansion of f. It is clear that each fj is a
homogeneous polynomial of degree k.

An important notion in the study of holomorphic function spaces is the notion
of fractional differential operators. In this paper we consider one type of them.
For a holomorphic function f with homogeneous expansion (1) and for a > —1

The first author supported by the Heinrich Hertz Stiftung.
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we define the fractional differential as follows:

oo

Df(z) =Y (k+1)*fi(2), z€B",

k=0

and the inverse operator D¢ is defined in the standard sense:

DD (2) = f(2).
It is not difficult to show that

(2) f(z):/o Df(rz)dr.

The Bloch space plays a very important role in classical geometric function
theory. The one-dimensional case of the holomorphic Bloch space is well inves-
tigated (see [2], [3]). The aim of this paper is the study of the Bloch space on
the unit ball in C™. There are several possible ways for a generalization of the
holomorphic Bloch space to higher dimensions (see [11], [12]). We give a new
generalization of them and consider the weighted case which is new also in the
one-dimensional case. Note that the polydisc case has already been investigated
(see for example [7], [13]).

Let S be the class of all non-negative measurable functions w on (0, 1) for which
there exist positive numbers M, qu, My, (Mw, gw € (0,1)) such that

w(Ar)
w(r)

for all » € (0,1) and A € [qu,1]. For properties of functions from S, see [10].
Using the results of [10], one can prove the following lemma.

mg, < < M,,

Lemma 1.1. Let w € S. Then there exist bounded measurable functions n and

€ so that
te(u)
w(zr) = exp {n(:v) —|—/ — du} , t€(0,1),
and
1 w log M.,
cay =2 <oy < B2 <3 e (0,1).
log g log gu

Next we assume that n(x) = 0 for z € (0,1).

Besides, for any functions f and g, the notation f < g (f = g) will mean
that |f(2)] < Clg(2)| (Jg(z)| < C|f(2)]) and the notation f =< g will mean that
C11f(2)| < |g(2)] < Ca|f(z)| for some positive constants C, Cy, Cy independent
of z.

Remark 1.2. Note that it is not difficult to show that if 1 — |z| < 1 — |w]| then
w(l —[z]) = w(l = fwl).
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One of the applications is the description of the (AP (w))* in case 0 < p < 1 via
Bloch spaces. Here AP(w) is the w-generalization of AP(«) space in the case of
unit ball in C™ and is defined as the class of holomorphic functions f for which

oy = [ £GP0 = al) doz) < oo,

where dv(z) is volume measure on B", normalized so that v(B™) = 1 and 0 <

B < 1.
In particular, if w(t) = t*, then we have AP(w) = AP(a) (see [6], [5]). In this
case we have a generalization of the Djrbashian’s formula:

[(nta+l) / (1 =IKP)*f(©) i
(n+D(a+1) Jga (1 = (2,¢))ntite

() 1) =+ 70

(for proof see [5, Theorem 6.1]).
The corresponding space of measurable functions will be denoted by LP(w).
It is known that AP(w) is a Banach space if p > 1 and a complete metric space
with distance p(f,g) = ||f — g||ip(w) ifo<p<l1.

Definition 1.3. Let f € H(B™), w € S and 0 < o, < 1. A function f belongs
to the Bloch space B} = B,, if

(4) My = sup {Mmf(zﬂ} < +o0.

zepr (Wl —12])

Notice that, in view of our definition of Df, || f| s, = My is indeed a norm.
(We do not have to add |f(0)].) This follows from the fact that here Df = 0
implies f = 0 for holomorphic f. It is easy to see that B, is a Banach space with
respect to the norm || - ||.

As in the case of a polydisc, one can see that if n = 1 and w(t) = t!7%, then
we have the Bloch space of one variable (for details see [7, Proposition 1.5]).

We need the following lemmas to prove the main results.

Lemma 1.4. The following properties of D™ are evident:

1. DD*f(z) = D1 f(z);
2. Dm(l - <27C>)7Q = (1 - <27C>)7Q7m7’
3. Df = Rf(2) + f(2), where Rf(z) = Y_7_, 222,

It is clear that R(1 — (2,())™® = a(z,{)(1 — (z,¢)) "> L.

Lemma 1.5. Let we S, a+1—-03, >0, and 8 — a > «. Then

(1 - I2)(1 - [¢)) (1~ )
/. - Gwprr YO g ey
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PROOF: Let o be the surface measure on S™ normalized so that o(S™) = 1. The
formula

1
(5) F(2) dv(z) = 2n / 2l [ ) do(0)
Bn 0 Sn

shows the relation of both measures (for the proof see [12, p.9] or [9, p. 13]).
By (5) for 8 > 0 we get

(1~ k)1 ~ g
Joo TR g 0

Lo . do(¢)
:2n/0 2 1(1_7.2) w(l_r)ernW

1 _ 22\« _
SQH/ p2n—1 (1—=r9)%w(1—r) dr.
0 (1 —r|z[)ft?

In the last inequality we have used Theorem 1.12 from [12].
The problem is to estimate the last one-dimensional integral. Using the proof
of Lemma 1.6 [7] and putting a = o, b— 1= 5+ 1, we get

L)l =) (1= ) — |2
/o I L e (e o

ifa+1—-0,>0,8—a> a,, which proves our lemma. O

2. Description theorems in B,

Lemma 2.1. Let 8 > —1 and f € H(B"), f € AY(3). Then (1 — |2|?)Df(z) €
LY(B).

PROOF: Let f € AY(3). By Theorem 2.16 from [12] we have (1 — |z|*)Rf(z) €
LY(B). Tt is clear, that the function (1 —|z|?)f(z) also belongs to the space L!(f3).
Then by Lemma 1.4 we get (1 — |2|2)Df(z) € L(B). O

Corollary 2.2. Let f € B, and 3 > 3,,. Then Df € AY(p).
Lemma 2.3. Let f € B, 6 > (., then

—1c12)8
©) = [ U S O,

PrOOF: If B > B, then Df € A'(B) hence the integral in (6) is convergent.
Using (2) and (3) we get

f(2)

1 112\ 8
com [ [ G e prQan) ar

1 r
C(B8,n) / n(l - |C|2)6Df(<)/0 1- T<Zfl<>)ﬁ+1+n dv(z)
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and the proof is finished. O
Lemma 2.4. Let f € B, and 3 > f3,,. Then f € AY(3—1).

Proor: Using Lemma 2.3 for v > 3, and v — 8 > 0 we get

[l et

b [ O
< [ DOl = 1Py [ e i) Q)

< / DAL~ [C2)° dw(C) < oo,
Bn

by Corollary 2.2. O

Let L = L (B™) be the class of measurable functions on B™, for which
1fllees = SéuBQl{lf(Z)lwfl(l = [2%)} < +oc.
Proposition 2.5. A holomorphic function f belongs to B, if and only if the
function (1 — |z|)Df(z) belongs to L.
The next theorem gives a description of the analytic part of LS.

Theorem 2.6. Let f € H(B"), a > a,+1,k € N. Then (1—12|?)*DFf(2) € L
if and only if (1 — |z|2)*"1DF-1f(2) € L.

ProOF: Let g(z) = (1 — |2|))*D*f(2) and g € L°. Taking 3 sufficiently large,

using Lemmas 2.3 and 1.5, we get

S N
D= [ eI o)

(-l [ ey
< s {POTIieE | . gm0 o
S e S
and, hence,

i (1—|<|2>a1} N
,feBpn{'D TN Sa ey | <>

which proves that the function h(z) = (1 — |2|?)¥"1D*1f(2) belongs to the
space Ly .
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Conversely, let h € LY. Then, using Lemma 1.4 we get

D= [ B S LV )

g 1= (2, Q)0+

Repeating the argument of the first part of the proof, we finish the proof of the
theorem. (]

Using Theorem 2.6 one can give an another characterization of B,,.

Theorem 2.7. A function f belongs to B, if and only if

(1= )
zseué’n{ - (Z)'} <o

for a > a,.

3. Bounded projections and inverse operators

Let us consider the following operator

Fnt+a+1) / f(Qdv(Q)
Fin+ Dl (a+1) Jpn (1= (z,¢))>t

Theorem 3.1. Let o > (3,,. Then the map Q) is bounded from LY to B,,, where

w(t) = t*~tw(t). Moreover Q,, is surjective.

Qaf(z) =

(> 0).

PRrROOF: Let f € L. We show that the function F(z) = Qaf(z) belongs to the
space B,. Using Lemma 1.5 we get

— |12 1w(1 — w(l—|z
FEI=fles [ ST D e < i1 S 1D

which shows that F' € B, and ), is a bounded operator from LZ° to B,,. Next
we show that Q. is onto: for any f € B, there exists a function ¢ € L2 such
that f(z) = Qad(2) (z € B").

To this end we consider first the function h(z) = (1—|2|?)*Df(z) which belongs
to L. Then by Theorem 2.6 the function ¢(z) = a~'(1 — |z|*)*~! f(z) belongs
to L, too. We have

Qa(b(z) =

F(TL +a+ 1) / (1 B |C|2)a_1f(<) dV(C)

F'n+1)I'(a+1) (1= {z,¢))xtn

Further, by Lemma 2.4 we get f € Al(a — 1) if @ > 3, and therefore f(z) =
Quh(z), z € B™. O
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If we consider the integral operator

_ Dmtat+l) [ A-[P)FQ
Po‘f(z)_l“(n+1)l“(a+1)/ PN

then we have the following analogue of Theorem 3.1.

(©) (a>0),

Theorem 3.2. Let o > 3,,. Then P, is a bounded operator from LY to B, and
if a > (3, then P, is onto.

PROOF: The first part of the proof is similar to that of Theorem 3.1. To prove
that the map is onto we take the function

o =a-1p) [ G w. ren.

and show first that ¢ € LZ°. To this end we use Lemma 2.3 and 1.4. Then

/ (L —¢PP)*tdv(Q) 1
B (1=

Gw))™ (1= (z, Q) = (1= (z,w)) et

Next for sufficient large m € N we get

o(2) APt [ Q—pP)rDr)
T 2L T, e ) d “)‘
om 1— <2 dv(¢) dv(w
< [ a-wryipse| [ B —(<<,z|u>|>"3+n<1 —(<2,<>(>aln+1
=

(1~ Jwl)"|Df (w)]
/Bn T (it @)

By Lemma 1.5 we have

(1 —Jw)" wd — |wl)
1= (z,w)[mtn+t

o) < 17l -12P) [ dv(w) = |1 flp.w(1 - J2]).

Therefore ¢ € L. Next we show that P, (¢(z)) = f(z). We have
— |w 2\« _ 2\a—1 v
Pasen = o) [ W[ ASKQ00

1= (z,w))"+e (1= (w, ))rrat

= clan [ 010 [ et )

_ 2\a—1
= C(a,n)/n (1(1 _|C<|Z)<>)n]jr(§) dv(C) = f(2),
where C'(a,n) = F(F("JFQH)

n+1)I'(a+1) "
For the last equality we have used (3). O
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The next problem in which we are interested is the following: our aim is to
find the inverse operator of P, which maps B, to LY. Furthermore, if this is the
case, whether P, (P} (f))(z) = f(z) (z € B™) for all f € B,,. The solution of this
problem is positive. We consider the general operator

Rof @)= =1 [ GVl @), av > -1,

The following theorem holds.

Theorem 3.3. Let o > 3, and 8 > o,. Then

(a) PaRap(f)(2) = f(2) (z € B") for all f € B,;
(b) the operator R, g is bounded from B, to LY, and there exist constants
C4(w), Cz2(w) such that

(7) Cr(W)fllB, < |RapfllLe < Co(W)|IfllB;

(¢) f € B, ifand only if Ry pf € L.

PrROOF: (a) We show that P,Rasf(2) = f(2),z € B™. To this end let us
calculate Py Rq gf(2) using the Fubini theorem:

1_<2a+ﬁ—1 1—w20‘_1fw
Pafasf () = Clam) [ GEREEC [ L= RO vy an)

o L= () P—Td(C
= Clom [, A=)t | o R e 0

_ / (A= JwP)*F ) ) = 1), o> B,

n (1= {(z,w))>tn

(We have used Lemma 2.4 and (3)).

(b) Let f € B,. Theorem 3.1 implies that there exists a function ¢ € L2 such
that Qué(z) = f(2) (# € U™). Then by Fubini theorem, we get

) 1— ¢ tdv(¢) dv(w
Raaf(z) = Closm = PP [ otw) [ st e e

(1 _ |Z|2)B ‘/Bn ( (b(w)dy(w)

1= (z,w))>+Ftn

Therefore

|Rapf(2)] (1= Jw?)* w(l — [w]) ,
a1 = |I¢|\L;o(1—|z|2)ﬁ/8n Ty () < 6l

in the last inequality we have used also Lemma 1.5.
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So there exists a constant Cy(w), such that

|Ra,pf(2)|

(8) w(l — |Z|) < 02(w)||¢”l/f,°w(1 - |Z|)

which shows that R, g € Lgy.
Further, by Theorem 3.2 there exists Cp(w) > 0 such that

[fllB. = PaRapfllB. < Co(w)|RapfllLoe-
Taking O} (w) = Cy *(w) we get

(9) [Rapflle = Cr(w)|fllB.-
By (8) and (9) we get the proof of (7).
(¢) The proof follows from (7). O

Remark 3.4. Notice that the Bloch space B, is not separable. If we consider
the subspace of B, of all functions f € B, for which

(1 -1z

i DA e P A =0

then we get a new separable space of holomorphic functions, called little Bloch
space BY.

The little Bloch space is of independent interest (see [1], [4], [12]). Using
standard arguments one can prove that
Proposition 3.5. The following statements are true:
(a) BY is closed subspace of B;

(b) the set of polynomials is dense in BY.

In this paper we do not discuss other properties of this space. Based on the re-
sults of this paper we intend to write a separate paper about holomorphic weighted
little Bloch spaces.

4. Linear continuous functionals on A?(w)

In this section we describe the duals of AP(w) in terms of holomorphic Bloch
space in the case if 0 < p < 1. We need to establish the following lemmas before
proving the duality result.

Lemma 4.1. Letw € S, f € AP(w), 0 < p < co. Then

| £l a7 (w)
< , € B™.
TN G- e ©

957
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PROOF: Let z € B™ and let BY(r) be the ball with the center z and radius
r=(1-|z|)/2. If w e BZ(r), then

1— 2| 1—|—|z|<1

] < o = 2| +]2] < -

412l =

which shows that BZ(r) C B™. The function |f|P is subharmonic and we have
1
|B2(r)| Br (r)

On the other hand it is not difficult to show that 1 — |z| < 1 — |w|. Then by
Remark 1.2 we get also w(1 — |z|) < w(1 — |w|). Using the last fact we get

IFRIP < | (w)[? dv(w).

P Pu(1 — |2|) dv ”f”pi(“’)
P10 % ey [ = e dvlw) < e

We have |B™(r)| < (1 — |z|)"*!. Then we get

| £l ar )
|f(2)] < (1 — |z|)(+D/pl/P(1 — |2|)

Lemma 4.2. Letw € S, f € AP(w), 0 < p < 1. Then

wl/P(1— |z b
([ o=ty @) < [ 1rere - )

PROOF: We have |f(2)| = |f(2)P|f(2)|'"P. Then using Lemma 4.1, we get

) 11ty £ ()P
()] = w@P/P(1 — |2])(1 — |2) P D/

Therefore

w'/P(1 —|2)) —p
|f(Z)| (1 — |Z|)("+1) (1—1/p) |f( )|p||f||}4p(w)w(1 - |Z|)7

and the integration gives us the proof of Lemma 4.2. O

The following theorem describes the continuous linear functionals on A?(w) in
the case 0 < p < 1.

Theorem 4.3. Let 0 < p <1, w € S. Then the dual of AP(w) under the pairing

(10) /f 9(z)(1 = |2*)* dv(2)
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is isomorphic to By, where w*(t) = w'/P(t)t+VA/P=D= and o > ay, /p + (n +

H(/p—1).

PROOF: Let ® be a bounded linear functional on AP(w). Then using Lemma 4.2
we have

(/Bn |f ()1 - |z|)dy(z))p < /Bn ()Pl — |2]) du(z),

where Q(t) = w'/P(+)t(*+1(1/P=1) and hence we get that @ is also a bounded linear
functional on A'(Q). As before we can regard A () as a subspace of L' (2). Then
by the Hahn-Banach theorem ® can be regarded as element of (L'())*. Next,
we use the Riesz theorem: there exists a function G € Lo (B™) such that

(f) = ; FIOGOT — <)) dv(C)
with [ @] = [|Gl[L.(Bn)-
By Lemma 2.4 we have: if & > max{a,/p+ (n+1)/(1/p—1), B, — 1} then
f € A'(a). Therefore writing (3) for f and using also Fubini theorem, we get

o) = [ a-irrw [ @@ e a),

Let

Q1 —[¢])dv(¢
o) = [, TG gy

we show that g € B,~. Using Lemmas 1.5, 4.2 we get

1/p(1 — 1 — [¢)(n+D)(A/p—1)
[D™"g(t)] < /n |G(C)|w ( i |_C|<)<( t>|0¢|£17,)+m+1 dv(¢)
1/p(1 — 1 — [¢])(r+D(A/p-1)
S ||GHLQQ(B") /n “ ( |1 |_C|<)<(, t>|a|£7|z)+m+l dv C
w(l = [¢hdv(e)  \""
R e )
< w/P(1 —t])

1G5 T e

So we get
(1 —eh™

|Dm9(f)|m

=Gl

559
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where w*(t) = w'/P(t)t+DA/P=1)=a " which shows that g € B,- and the func-
tional ® has the form

o(f) = f() g(t)(1 = [t du(t).
Furthermore, there exists a constant C; > 0 such that

(11) CillgllB.. < || 2]

Conversely, let ®(f) be defined by (10). We will show that ® is a bounded
functional on AP(w) and g € B,,~. By Theorem 3.1 there exists a function h € L
where @(t) = w*(t)t?~1 (8 > B, + 1) such that Qz(h)(2) = g(z). Then we get

r=[ - [ T ao)

- /W/ %du(o du(t).

Therefore

1] < lhflz= /( Pl / 0" i avic).

{t,Q)|n+h

Without loss of generality, we can take

B >max{a,/p—a+(n+1)(1/p—-1)+1, Bu/p+a—(n+1)(1/p—1)}.

Then by Lemma 1.5 we have

1l < HhIILgo/B( %) D AP=DOYR (L — [C)IF(O)] dr ()

IN

1/p
ez ([ QP =10 an@) = Iz 1o

Using the fact that [|A[|L < ||g][5; we get
(12) [®(f)] <

Further, it is easy to show that the linear functional ® is continuous on AP(w) if
and only if

@] = sup |®(f)]| < +o0.
171lap (<1

Then by (12) we get that ®(f) is continuous on AP(w) and hence bounded. Fur-
thermore there exists a constant Co > 0 such that

(13) @] < C2
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Using the inequalities (11) and (13) we finish the proof of our theorem. O

Proposition 4.4. Let &(t) =t “w(t),a > max{a, — 1, B3 — 1}, g € Bz. Then
there exists a function G € B,, such that

G(C)dv
(14) 9(z) = /B - <(O <>>£)n+1 |

PROOF: Let g € Bz. Then the function g;(2) = (1—|2]?)*TtDg(z) belongs to the
space L% and, by Theorem 2.6, the function g2(z) = (1 —|2|?)“g(z) also belongs
to L and [|g2[|ree = [|g1]|Lee- Taking

1—[t*)%g(t

we get

/ G(Qdv (<)
g (1= (z,¢))atntt

_  2\a dv(¢) dv(t)

= /n(l [1%)%g(t) /Bn (1= (C, )" (L — (2, C))otntt
e

= f A a0 = o)

if @« > Bz — 1. It remains to prove that G € Bg;. We have

DGO = sl [ D) < g D,

Bn [1=(C B2~ (1 —1¢?)
Hence G € B,,. ([
Using Proposition 4.4 we have a new description of the space AP (w):

Theorem 4.5. Let 0 < p < 1, w € S. Then the dual of space AP(w) under the
pairing

(fa) = [ s avt

is isomorphic to B,,-, where w*(t) = w!/P(t)t(r+1HA/p=1),

PRrOOF: Using Theorem 4.3 it is sufficient to prove that

FR)g@) (1~ [t*)* dv(t) = | F($)G(E) du(t).
Bn Bn
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To this end we use Proposition 4.4. We have with (3)

_ 2\« G(C) dl/(C) v
[ roa-upr [ e w

_ / / (L —[¢*)*f () du(t) =

Q

©) dv(Q) = [ f(O)G(E) dv(t).

(1= (G p))tntt Br
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