446 research outputs found
Static properties of the dissipative random quantum Ising ferromagnetic chain
We study the zero temperature static properties of dissipative ensembles of
quantum Ising spins arranged on periodic one dimensional finite clusters and on
an infinite chain. The spins interact ferro-magnetically with nearest-neighbour
pure and random couplings. They are subject to a transverse field and coupled
to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system
using Monte Carlo simulations of the classical two-dimensional counterpart
model. The coupling to the bath enhances the extent of the ordered phase, as
found in mean-field spin-glasses. In the case of finite clusters we show that a
generalization of the Caldeira-Leggett localization transition exists. In the
case of the infinite random chain we study the effect of dissipation on the
transition and the Griffiths phase.Comment: 21 pages, 10 figure
New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum
IIn 2006 the PVLAS collaboration reported the observation of an optical
rotation generated in vacuum by a magnetic field. To further check against
possible instrumental artifacts several upgrades to the PVLAS apparatus have
been made during the last year. Two data taking runs, at the wavelength of 1064
nm, have been performed in the new configuration with magnetic field strengths
of 2.3 T and 5 T. The 2.3 T field value was chosen in order to avoid stray
fields. The new observations do not show the presence of a rotation signal down
to the levels of rad at 5 T and rad at
2.3 T (at 95% c.l.) with 45000 passes in the magnetic field zone. In the same
conditions no ellipticity signal was detected down to at 2.3
T (at 95% c.l.), whereas at 5 T a signal is still present. The physical nature
of this ellipticity as due to an effect depending on can be excluded by
the measurement at 2.3 T. These new results completely exclude the previously
published magnetically induced vacuum dichroism results, indicating that they
were instrumental artifacts. These new results therefore also exclude the
particle interpretation of the previous PVLAS results as due to a spin zero
boson. The background ellipticity at 2.3 T can be used to determine a new limit
on the total photon-photon scattering cross section of barn at 95% c.l..Comment: 25 pages, 7 figures Main changes rel. to v.2: minor changes to
abstract, replaced Figures 4,5,6, corrected typographical errors. Paper
submitted to Physical Review
Mycobacterium tuberculosis infection modulates adipose tissue biology
Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also
persist in extrapulmonary sites. Macrophages are considered the prime cellular
habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes
of fat tissue where it expresses stress-related genes. Moreover, perigonadal
fat of Mtb-infected mice disseminated the infection when transferred to
uninfected animals. Adipose tissue harbors leukocytes in addition to
adipocytes and other cell types and we observed that Mtb infection induces
changes in adipose tissue biology depending on stage of infection. Mice
infected via aerosol showed infiltration of inducible nitric oxide synthase
(iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of
CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of
aerosol Mtb-infected mice provided evidence for upregulated expression of
genes associated with T cells and NK cells at 28 days post-infection.
Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were
identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+
subpopulations. Gene expression analysis of these cells revealed that they
expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and
CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells.
Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well.
Our results reveal the ability of Mtb to persist in adipose tissue in a
stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate
infected adipose tissue where they produce IFN-γ and assume an effector
phenotype. We conclude that adipose tissue is a potential niche for Mtb and
that due to infection CD8+ T cells and NK cells are attracted to this tissue
Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA
Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear
astrophysics are performed at the LUNA (Laboratory for Underground Nuclear
Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso
laboratory. By virtue of a specially constructed passive shield, the laboratory
gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels
comparable to those experienced in dedicated offline underground gamma-counting
setups. The gamma-ray background induced by an incident alpha-beam has been
studied. The data are used to evaluate the feasibility of sensitive in-beam
experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.
The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang
nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement
of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran
Sasso underground laboratory by both the activation and the prompt gamma
detection methods. The present work reports full details of the prompt gamma
detection experiment, focusing on the determination of the systematic
uncertainty. The final data, including activation measurements at LUNA, are
compared with the results of the last generation experiments and two different
theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.
Orbital medial wall fractures: Purely endoscopic endonasal repair with polyethylene implants
Our technique couples the stronger support granted by non-resorbable materials and the minimal invasiveness of the endoscopic approach without the need for long-term nasal packing
Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations
Recently, the LUNA collaboration has carried out a high precision measurement
on the 3He(alpha,gamma)7Be reaction cross section with both activation and
on-line gamma-detection methods at unprecedented low energies. In this paper
the results obtained with the activation method are summarized. The results are
compared with previous activation experiments and the zero energy extrapolated
astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
Search for low Energy solar Axions with CAST
We have started the development of a detector system, sensitive to single
photons in the eV energy range, to be suitably coupled to one of the CAST
magnet ports. This system should open to CAST a window on possible detection of
low energy Axion Like Particles emitted by the sun. Preliminary tests have
involved a cooled photomultiplier tube coupled to the CAST magnet via a
Galileian telescope and a switched 40 m long optical fiber. This system has
reached the limit background level of the detector alone in ideal conditions,
and two solar tracking runs have been performed with it at CAST. Such a
measurement has never been done before with an axion helioscope. We will
present results from these runs and briefly discuss future detector
developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on
Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008.
Author affiliations are reported on the title page of the paper. In version
2: 1 affiliation change, 3 references adde
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies
- …
