9 research outputs found

    Semen Modulates the Expression of NGF, ABHD2, VCAN, and CTEN in the Reproductive Tract of Female Rabbits

    Get PDF
    Semen changes the gene expression in endometrial and oviductal tissues modulating important processes for reproduction. We tested the hypothesis that mating and/or sperm-free seminal plasma deposition in the reproductive tract affect the expression of genes associated with sperm-lining epithelium interactions, ovulation, and pre-implantation effects (nerve growth factor, NGF; α/β hydrolase domain-containing protein 2, ABHD2; C-terminal tensin-like protein, CTEN or TNS4; and versican, VCAN) in the period 10-72 h post-mating. In Experiment 1, does (n = 9) were treated with gonadotropin-releasing hormone (GnRH) (control), GnRH-stimulated, and vaginally infused with sperm-free seminal plasma (SP-AI), or GnRH-stimulated and naturally mated (NM). In Experiment 2, does (n = 15) were GnRH-stimulated and naturally mated. Samples were retrieved from the internal reproductive tracts (cervix-to-infundibulum) 20 h post-treatment (Experiment 1) or sequentially collected at 10, 24, 36, 68, or 72 h post-mating (Experiment 2, 3 does/period). All samples were processed for gene expression analysis by quantitative PCR. Data showed an upregulation of endometrial CTEN and NGF by NM, but not by SP-AI. The findings suggest that the NGF gene affects the reproductive tract of the doe during ovulation and beyond, influencing the maternal environment during early embryonic development.Funding agencies: Research Council FORMAS, Stockholm [2017-00946, 2019-00288]; Swedish Research Council (Vetenskapsradet, VR)Swedish Research Council [2015-05919]; Juan de la Cierva Incorporacion Postdoctoral Research Program (MICINN) [IJDC-2015-24380];  [2018 FI_B 00236]</p

    Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas.

    Get PDF
    We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414), Sox2 gene amplification (8.5%; N = 492), and Sox 2 promoter hypomethylation (100%; N = 258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM

    PEDIATRICS LABORATORY RESEARCH

    No full text

    The Glial Differentiation Factor Nuclear Factor One B (Nfib) Induces Differentiation and Inhibits Growth of Glioblastoma.

    No full text
    International audienceThe molecule CD90 is a N-glycosylated, glycophosphatidylinositol anchored cell surface protein, originally described on thymocytes. CD90 has been considered as a surrogate marker for a variety of stem cells and has recently been reported on glioblastoma stem cells. CD90 is also expressed on T lymphocytes, endothelial cells, fibroblasts and neurons. The function of CD90 is not fully elucidated. CD90 has been involved in cell-cell and cell-matrix interactions, in neurite outgrowth, T cell activation and apoptosis. In this study, we confirmed the expression of CD90 on human glioblastoma stem-like cells from serum-free neurosphere cultures. We also observed RNA and protein CD90 expression on primary cell lines from FSC-containing culture (adherent cell lines) and on freshly prepared glioblastoma specimen. In order to study the function of CD90 on glioblastoma cells, we used a silencing strategy to decrease the expression of CD90 on the immortalized U251 cell line. We then compared the viability, the tumor growth and the migration property of the wild-type CD90+ U251 cells and CD90 down-regulated U251 clones. The decrease of CD90 expression did not affect the viability and the tumor growth of U251 cells. In contrast, down-regulation of CD90 mediated the decreased ability of tumor cell migration using both scratch wound healing and boyden chamber migration assays. Experiments are currently on going to test the effect of CD90 expression on tumorigenicity in mice models. In total, this study might lead to better understand the role of CD90 on the pathology in particular in term of tumor migration/invasion of human glioblastoma

    Review on fatigue life prediction models of welded joint

    No full text
    corecore