555 research outputs found

    Interactions Between the Serotonergic and Other Neurotransmitter Systems in the Basal Ganglia: Role in Parkinson's Disease and Adverse Effects of L-DOPA

    Get PDF
    Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. However, other non-dopaminergic neuronal systems such as the serotonergic system are also involved. Serotonergic dysfunction is associated with non-motor symptoms and complications, including anxiety, depression, dementia, and sleep disturbances. This pathology reduces patient quality of life. Interaction between the serotonergic and other neurotransmitters systems such as dopamine, noradrenaline, glutamate, and GABA controls the activity of striatal neurons and are particularly interesting for understanding the pathophysiology of PD. Moreover, serotonergic dysfunction also causes motor symptoms. Interestingly, serotonergic neurons play an important role in the effects of L-DOPA in advanced PD stages. Serotonergic terminals can convert L-DOPA to dopamine, which mediates dopamine release as a "false" transmitter. The lack of any autoregulatory feedback control in serotonergic neurons to regulate L-DOPA-derived dopamine release contributes to the appearance of L-DOPA-induced dyskinesia (LID). This mechanism may also be involved in the development of graft-induced dyskinesias (GID), possibly due to the inclusion of serotonin neurons in the grafted tissue. Consistent with this, the administration of serotonergic agonists suppressed LID. In this review article, we summarize the interactions between the serotonergic and other systems. We also discuss the role of the serotonergic system in LID and if therapeutic approaches specifically targeting this system may constitute an effective strategy in PD

    A residential energy demand system for Spain

    Get PDF
    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an energy demand system with household microdata. In doing so, we tackle several econometric and data problems that are generally recognized to bias parameter estimates. This is obviously relevant, as obtaining correct price and income responses is essential if they may be used for assessing the economic consequences of hypothetical or real changes. With this objective, we combine data sources for a long time period and choose a demand system with flexible income and price responses. We also estimate the model in different sub-samples to capture varying responses to energy price changes by households living in rural, intermediate and urban areas. This constitutes a first attempt in the literature and it proved to be a very successful choice

    A \u3cem\u3eDendroctonus\u3c/em\u3e Bark Engraving (Coleoptera: Scolytidae) From A Middle Eocene \u3cem\u3eLarix\u3c/em\u3e (Coniferales: Pinaceae): Early Or Delayed Colonization?

    Get PDF
    An engraving made by a scolytid bark beetle, assigned to the genus Dendroctonus of the tribe Tomicini, has been identified on a mummified, middle Eocene (45 Ma) specimen of Larix altoborealis wood from the Canadian High Arctic. Larix altoborealis is the earliest known species of Larix, a distinctive lineage of pinaceous conifers that is taxonomically identifiable by the middle Eocene and achieved a broad continental distribution in northern North America and Eurasia during the late Cenozoic. Dendroctonus currently consists of three highly host-specific lineages that have pinaceous hosts: a basal monospecific clade on Pinoideae (Pinus) and two sister clades that consist of a speciose clade associated exclusively with Pinoideae and six species that breed overwhelmingly in Piceoideae (Picea) and Laricoideae (Pseudotsuga and Larix). The middle Eocene engraving in L. altoborealis represents an early member of Dendroctonus that is ancestral to other congeneric species that colonized a short-bracted species of Larix. This fossil occurrence, buttressed by recent data on the phylogeny of Pinaceae subfamilies and Dendroctonus species, indicates that there was phylogenetically congruent colonization by these bark-beetle lineages of a Pinoideae + (Piceoideae + Laricoideae) host-plant sequence. Based on all available evidence, an hypothesis of a geochronologically early invasion during the Early Cretaceous is supported over an alternative view of late Cenozoic cladogenesis by bark beetles onto the Pinaceae. These data also suggest that host-plant chemistry may be an effective species barrier to colonization by some bark-beetle taxa over geologically long time scales

    Sampling fossil floras for the study of insect herbivory: how many leaves is enough?

    Get PDF
    Despite the great importance of plant–insect interactions to the functioning of terrestrial ecosystems, many temporal gaps exist in our knowledge of insect herbivory in deep time. Subsampling of fossil leaves, and subsequent extrapolation of results to the entire flora from which they came, is practiced inconsistently and according to inconsistent, often arbitrary criteria. Here we compare herbivory data from three exhaustively sampled fossil floras to establish guidelines for subsampling in future studies. The impact of various subsampling routines is evaluated for three of the most common metrics of insect herbivory: damage type diversity, nonmetric multidimensional scaling, and the herbivory index. The findings presented here suggest that a minimum fragment size threshold of 1&thinsp;cm2 always yields accurate results and that a higher threshold of 2&thinsp;cm2 should yield accurate results for plant hosts that are not polyphyletic form taxa. Due to the structural variability of the plant hosts examined here, no other a priori subsampling strategy yields consistently accurate results. The best approach may be a sequential sampling routine in which sampling continues until the 100 most recently sampled leaves have caused no change to the mean value or confidence interval for damage type diversity and have caused minimal or no change to the herbivory index. For nonmetric multidimensional scaling, at least 1000&thinsp;cm2 of leaf surface area should be examined and prediction intervals should be generated to verify the relative positions of all points. Future studies should evaluate the impact of subsampling routines on floras that are collected based on different criteria, such as angiosperm floras for which the only specimens collected are those that are at least 50&thinsp;% complete.</p

    Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva

    Get PDF
    Background: Holometabolous insects are the most diverse, speciose and ubiquitous group of multicellular organisms in terrestrial and freshwater ecosystems. The enormous evolutionary and ecological success of Holometabola has been attributed to their unique postembryonic life phases in which nonreproductive and wingless larvae differ significantly in morphology and life habits from their reproductive and mostly winged adults, separated by a resting stage, the pupa. Little is known of the evolutionary developmental mechanisms that produced the holometabolous larval condition and their Paleozoic origin based on fossils and phylogeny. Results: We provide a detailed anatomic description of a 311 million-year-old specimen, the oldest known holometabolous larva, from the Mazon Creek deposits of Illinois, U.S.A. The head is ovoidal, downwardly oriented, broadly attached to the anterior thorax, and bears possible simple eyes and antennae with insertions encircled by molting sutures;other sutures are present but often indistinct. Mouthparts are generalized, consisting of five recognizable segments: a clypeo-labral complex, mandibles, possible hypopharynx, a maxilla bearing indistinct palp-like appendages, and labium. Distinctive mandibles are robust, triangular, and dicondylic. The thorax is delineated into three, nonoverlapping regions of distinctive surface texture, each with legs of seven elements, the terminal-most bearing paired claws. The abdomen has ten segments deployed in register with overlapping tergites;the penultimate segment bears a paired, cercus-like structure. The anterior eight segments bear clawless leglets more diminutive than the thoracic legs in length and cross-sectional diameter, and inserted more ventrolaterally than ventrally on the abdominal sidewall. Conclusions: Srokalarva berthei occurred in an evolutionary developmental context likely responsible for the early macroevolutionary success of holometabolous insects. Srokalarva berthei bore head and prothoracic structures, leglet series on successive abdominal segments - in addition to comparable features on a second taxon eight million-years-younger - that indicates Hox-gene regulation of segmental and appendage patterning among earliest Holometabola. Srokalarva berthei body features suggest a caterpillar-like body plan and head structures indicating herbivory consistent with known, contemporaneous insect feeding damage on seed plants. Taxonomic resolution places Srokalarva berthei as an extinct lineage, apparently possessing features closer to neuropteroid than other holometabolous lineages

    Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva

    Get PDF
    Citation: Haug, J. T., Labandeira, C. C., Santiago-Blay, J. A., Haug, C., & Brown, S. (2015). Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. Bmc Evolutionary Biology, 15, 10. doi:10.1186/s12862-015-0428-8Background: Holometabolous insects are the most diverse, speciose and ubiquitous group of multicellular organisms in terrestrial and freshwater ecosystems. The enormous evolutionary and ecological success of Holometabola has been attributed to their unique postembryonic life phases in which nonreproductive and wingless larvae differ significantly in morphology and life habits from their reproductive and mostly winged adults, separated by a resting stage, the pupa. Little is known of the evolutionary developmental mechanisms that produced the holometabolous larval condition and their Paleozoic origin based on fossils and phylogeny. Results: We provide a detailed anatomic description of a 311 million-year-old specimen, the oldest known holometabolous larva, from the Mazon Creek deposits of Illinois, U.S.A. The head is ovoidal, downwardly oriented, broadly attached to the anterior thorax, and bears possible simple eyes and antennae with insertions encircled by molting sutures; other sutures are present but often indistinct. Mouthparts are generalized, consisting of five recognizable segments: a clypeo-labral complex, mandibles, possible hypopharynx, a maxilla bearing indistinct palp-like appendages, and labium. Distinctive mandibles are robust, triangular, and dicondylic. The thorax is delineated into three, nonoverlapping regions of distinctive surface texture, each with legs of seven elements, the terminal-most bearing paired claws. The abdomen has ten segments deployed in register with overlapping tergites; the penultimate segment bears a paired, cercus-like structure. The anterior eight segments bear clawless leglets more diminutive than the thoracic legs in length and cross-sectional diameter, and inserted more ventrolaterally than ventrally on the abdominal sidewall. Conclusions: Srokalarva berthei occurred in an evolutionary developmental context likely responsible for the early macroevolutionary success of holometabolous insects. Srokalarva berthei bore head and prothoracic structures, leglet series on successive abdominal segments - in addition to comparable features on a second taxon eight million-years-younger - that indicates Hox-gene regulation of segmental and appendage patterning among earliest Holometabola. Srokalarva berthei body features suggest a caterpillar-like body plan and head structures indicating herbivory consistent with known, contemporaneous insect feeding damage on seed plants. Taxonomic resolution places Srokalarva berthei as an extinct lineage, apparently possessing features closer to neuropteroid than other holometabolous lineages

    Sustained Stable Disease with Capecitabine plus Bevacizumab in Metastatic Appendiceal Adenocarcinoma: A Case Report.

    Get PDF
    In a patient who had been diagnosed in 2006 with appendiceal adenocarcinoma with peritoneal metastases after an incomplete surgery, palliative chemotherapy was administered. First-line treatment with 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX) and second-line treatment including 5-fluorouracil, leucovorin and irinotecan (FOLFIRI) plus panitumumab showed inefficiency in controlling disease progression. Third-line chemotherapy combining capecitabine plus bevacizumab was started, achieving good control of the tumour growth and a minor response in the second computed tomography scan. We decided to maintain the treatment, although forced bevacizumab "breaks" were necessary due to unexpected adverse events, with the patient suffering disease progression every time bevacizumab was stopped and reaching minor response again once the antiangiogenic treatment was reintroduced. During more than 10 years after starting third-line treatment, the patient maintained good performance status and disease stability with this "up and down" management until January 2019, when a neurological adverse event during bevacizumab infusion drove us to abandon it definitely

    Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction

    Get PDF
    Insects are a highly diverse group of organisms and constitute more than half of all known animal species. They have evolved an extraordinary range of traits, from flight and complete metamorphosis to complex polyphenisms and advanced eusociality. Although the rich insect fossil record has helped to chart the appearance of many phenotypic innovations, data are scarce for a number of key periods. One such period is that following the End-Permian Extinction, recognized as the most catastrophic of all extinction events. We recently discovered several 240-million-year-old insect fossils in the Mount San Giorgio Lagerstatte (Switzerland-Italy) that are remarkable for their state of preservation (including internal organs and soft tissues), and because they extend the records of their respective taxa by up to 200 million years. By using these fossils as calibrations in a phylogenomic dating analysis, we present a revised time scale for insect evolution. Our date estimates for several major lineages, including the hyperdiverse crown groups of Lepidoptera, Hemiptera: Heteroptera and Diptera, are substantially older than their currently accepted post-Permian origins. We found that major evolutionary innovations, including flight and metamorphosis, appeared considerably earlier than previously thought. These results have numerous implications for understanding the evolution of insects and their resilience in the face of extreme events such as the End-Permian Extinction

    Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death

    Get PDF
    Altres ajuts: This study received funding from the Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas' intramural program (2014/01 and 2017/02), Galician Government (Xunta de Galicia, Consellería de Educación; GRC2014/002), Navarra Government (Departamento de Salud; 046-2017), and Fondo Europeo de Desarrollo Regional (Regional European Development Fund).The loss of dopaminergic neurons and α-synuclein accumulation are major hallmarks of Parkinson's disease (PD), and it has been suggested that a major mechanism of α-synuclein toxicity is microglial activation. The lack of animal models that properly reproduce PD, and particularly the underlying synucleinopathy, has hampered the clarification of PD mechanisms and the development of effective therapies. Here, we used neurospecific adeno-associated viral vectors serotype 9 coding for either the wild-type or mutated forms of human alpha-synuclein (WT and SynA53T, respectively) under the control of a synapsin promoter to further induce a marked dopaminergic neuron loss together with an important microglial neuroinflammatory response. Overexpression of neuronal alpha-synuclein led to increased expression of angiotensin type 1 receptors and NADPH oxidase activity, together with a marked increase in the number of OX-6-positive microglial cells and expression of markers of phagocytic activity (CD68) and classical pro-inflammatory/M1 microglial phenotype markers such as inducible nitric oxide synthase, tumor necrosis factor alpha, interleukin-1β, and IL-6. Moreover, a significant decrease in the expression of markers of immunoregulatory/M2 microglial phenotype such as the enzyme arginase-1 was constantly observed. Interestingly, alpha-synuclein-induced changes in microglial phenotype markers and dopaminergic neuron death were inhibited by simultaneous treatment with the angiotensin type 1 blockers candesartan or telmisartan. Our results suggest the repurposing of candesartan and telmisartan as a neuroprotective strategy for PD
    • …
    corecore