239 research outputs found

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Ramified rolling circle amplification for synthesis of nucleosomal DNA sequences

    Get PDF
    Nucleosomes are a crucial platform for the recruitment and assembly of protein complexes that process the DNA. Mechanistic and structural in vitro studies typically rely on recombinant nucleosomes that are reconstituted using artificial, strong-positioning DNA sequences. To facilitate such studies on native, genomic nucleosomes, there is a need for methods to produce any desired DNA sequence in an efficient manner. The current methods either do not offer much flexibility in choice of sequence or are less efficient in yield and labor. Here, we show that ramified rolling circle amplification (RCA) can be used to produce milligram amounts of a genomic nucleosomal DNA fragment in a scalable, one-pot reaction overnight. The protocol is efficient and flexible in choice of DNA sequence. It yields 10-fold more product than PCR, and rivals production using plasmids. We demonstrate the approach by producing the genomic DNA from the human LIN28B locus and show that it forms functional nucleosomes capable of binding pioneer transcription factor Oct4

    Characteristics of predictor sets found using differential prioritization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feature selection plays an undeniably important role in classification problems involving high dimensional datasets such as microarray datasets. For filter-based feature selection, two well-known criteria used in forming predictor sets are relevance and redundancy. However, there is a third criterion which is at least as important as the other two in affecting the efficacy of the resulting predictor sets. This criterion is the degree of differential prioritization (DDP), which varies the emphases on relevance and redundancy depending on the value of the DDP. Previous empirical works on publicly available microarray datasets have confirmed the effectiveness of the DDP in molecular classification. We now propose to establish the fundamental strengths and merits of the DDP-based feature selection technique. This is to be done through a simulation study which involves vigorous analyses of the characteristics of predictor sets found using different values of the DDP from toy datasets designed to mimic real-life microarray datasets.</p> <p>Results</p> <p>A simulation study employing analytical measures such as the distance between classes before and after transformation using principal component analysis is implemented on toy datasets. From these analyses, the necessity of adjusting the differential prioritization based on the dataset of interest is established. This conclusion is supported by comparisons against both simplistic rank-based selection and state-of-the-art equal-priorities scoring methods, which demonstrates the superiority of the DDP-based feature selection technique. Reapplying similar analyses to real-life multiclass microarray datasets provides further confirmation of our findings and of the significance of the DDP for practical applications.</p> <p>Conclusion</p> <p>The findings have been achieved based on analytical evaluations, not empirical evaluation involving classifiers, thus providing further basis for the usefulness of the DDP and validating the need for unequal priorities on relevance and redundancy during feature selection for microarray datasets, especially highly multiclass datasets.</p

    Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation

    Get PDF
    BACKGROUND: Mycoplasmas are the smallest microorganisms capable of self-replication. Our previous studies show that some mycoplasmas are able to induce malignant transformation of host mammalian cells. This malignant transformation is a multistage process with the early infection, reversible and irreversible stages, and similar to human tumor development in nature. The purpose of this study is to explore mechanisms for this malignant transformation. METHODS: To better understand mechanisms for this unique process, we examined gene expression profiles of C3H cells at different stages of the mycoplasma-induced transformation using cDNA microarray technology. A total of 1185 genes involved in oncogenesis, apoptosis, cell growth, cell-cycle regulation, DNA repair, etc. were examined. Differences in the expression of these genes were compared and analyzed using the computer software AtlasImage. RESULTS: Among 1185 genes screened, 135 had aberrant expression at the early infection stage, 252 at the reversible stage and 184 at the irreversible stage. At the early infection stage, genes with increased expression (92 genes) were twice more than those with decreased expression (42 genes). The global gene expression at the reversible stage appeared to be more volatile than that at any other stages but still resembled the profile at the early infection stage. The expression profile at the irreversible stage shows a unique pattern of a wide range of expression levels and an increased number of expressing genes, especially the cancer-related genes. Oncogenes and tumor suppressors are a group of molecules that showed significant changes in expression during the transformation. The majority of these changes occurred in the reversible and irreversible stages. A prolonged infection by mycoplasmas lead to the expression of more cancer related genes at the irreversible stage. CONCLUSION: The results indicate that the expression profiles correspond with the phenotypic features of the cells in the mycoplasma induced transformation process. The early mycoplasma infection stage shares a common phenomenon with many other acute infections, genes with increased expression significantly outnumbering those with decreased expression. The reversible stage is a transition stage between benignancy and malignancy at the molecular level. Aberrant expression of oncogenes and tumor repressors plays a key role in mycoplasma-induced malignant transformation

    Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma

    Get PDF
    Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma

    Ptenb Mediates Gastrulation Cell Movements via Cdc42/AKT1 in Zebrafish

    Get PDF
    Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP2/PIP3 balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish

    Production and Characterization of Chimeric Monoclonal Antibodies against Burkholderia pseudomallei and B. mallei Using the DHFR Expression System

    Get PDF
    Burkholderia pseudomallei (BP) and B. mallei (BM) are closely related gram-negative, facultative anaerobic bacteria which cause life-threatening melioidosis in human and glanders in horse, respectively. Our laboratory has previously generated and characterized more than 100 mouse monoclonal antibodies (MAbs) against BP and BM, according to in vitro and in vivo assay. In this study, 3 MAbs (BP7 10B11, BP7 2C6, and BP1 7F7) were selected to develop into chimeric mouse-human monoclonal antibodies (cMAbs) against BP and/or BM. For the stable production of cMAbs, we constructed 4 major different vector systems with a dihydrofolate reductase (DHFR) amplification marker, and optimized transfection/selection conditions in mammalian host cells with the single-gene and/or double-gene expression system. These 3 cMAbs were stably produced by the DHFR double mutant Chinese hamster ovarian (CHO)-DG44 cells. By ELISA and Western blot analysis using whole bacterial antigens treated by heat (65°C/90 min), sodium periodate, and proteinase K, the cMAb BP7 10B11 (cMAb CK1) reacted with glycoproteins (34, 38, 48 kDa in BP; 28, 38, 48 kDa in BM). The cMAb BP7 2C6 (cMAb CK2) recognized surface-capsule antigens with molecular sizes of 38 to 52 kDa, and 200 kDa in BM. The cMAb CK2 was weakly reactive to 14∼28, 200 kDa antigens in BP. The cMAb BP1 7F7 (cMAb CK3) reacted with lipopolysaccharides (38∼52 kDa in BP; 38∼60 kDa in B. thailandensis). Western blot results with the outer surface antigens of the 3 Burkholderia species were consistent with results with the whole Burkholderia cell antigens, suggesting that these immunodominant antigens reacting with the 3 cMAbs were primarily present on the outer surface of the Burkholderia species. These 3 cMAbs would be useful for analyzing the role of the major outer surface antigens in Burkholderia infection

    Down-Regulation of Glucose-Regulated Protein (GRP) 78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells

    Get PDF
    Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC
    corecore