2,014 research outputs found

    Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS 1402+044

    Full text link
    We investigate the frequency-dependent radio properties of the jet of the luminous high-redshift (z = 3.2) radio quasar PKS 1402+044 (J1405+0415) by means of radio interferometric observations. The observational data were obtained with the VLBI Space Observatory Programme (VSOP) at 1.6 and 5 GHz, supplemented by other multi-frequency observations with the Very Long Baseline Array (VLBA; 2.3, 8.4, and 15 GHz) and the Very Large Array (VLA; 1.4, 5, 15, and 43 GHz). The observations span a period of 7 years. We find that the luminous high-redshift quasar PKS 1402+044 has a pronounced "core-jet" morphology from the parsec to the kilo-parsec scales. The jet shows a steeper spectral index and lower brightness temperature with increasing distance from the jet core. The variation of brightness temperature agrees well with the shock-in-jet model. Assuming that the jet is collimated by the ambient magnetic field, we estimate the mass of the central object as ~10^9 M_sun. The upper limit of the jet proper motion of PKS 1402+044 is 0.03 mas/yr (~3c) in the east-west direction.Comment: 9 pages, 6 figures

    Optically Faint Microjansky Radio Sources

    Full text link
    We report on the identifications of radio sources from our survey of the Hubble Deep Field and the SSA13 fields, both of which comprise the deepest radio surveys to date at 1.4 GHz and 8.5 GHz respectively. About 80% of the microjansky radio sources are associated with moderate redshift starburst galaxies or AGNs within the I magnitude range of 17 to 24 with a median of I = 22 mag. Thirty-one (20%) of the radio sources are: 1) fainter than I>I>25 mag, with two objects in the HDF IAB>I_{AB}>28.5, 2) often identified with very red objects IK>I-K>4, and 3) not significantly different in radio properties than the brighter objects. We suggest that most of these objects are associated with heavily obscured starburst galaxies with redshifts between 1 and 3. However, other mechanisms are discussed and cannot be ruled out with the present observations.Comment: to appear in Astrophysical Journal Letters, 3 figures, 1 tabl

    Variability and Velocity of Superluminal Sources

    Full text link
    We investigate the relation between the Doppler factor determined from variations in total flux at 22 and 37 GHz, and the apparent transverse velocity determined from VLBA observations at 2 cm. The data are consistent with the relativistic beaming theory for compact radio sources, in that the distribution of beta_{app}/delta_{var}, for 30 quasars, is roughly consistent with a Monte Carlo simulation. The intrinsic temperature appears to be ~2x10^{10} K, close to the "equipartition value" calculated by Readhead (1994). We deduce the distribution of Lorentz factors for a group of 48 sources; the values range up to about gamma=40.Comment: To be published in "Radio Astronomy at the Fringe", ASP Conf. Ser. Vol. 300, J. A. Zensus, M. H. Cohen, & E. Ros (eds.), 8 pages, 3 figures, needs rafringe.st

    The milliarcsecond-scale jet of PKS 0735+178 during quiescence

    Get PDF
    We present polarimetric 5 GHz to 43 GHz VLBI observations of the BL Lacertae object PKS 0735+178, spanning March 1996 to May 2000. Comparison with previous and later observations suggests that the overall kinematic and structural properties of the jet are greatly influenced by its activity. Time intervals of enhanced activity, as reported before 1993 and after 2000 by other studies, are followed by highly superluminal motion along a rectilinear jet. In contrast the less active state in which we performed our observations, shows subluminal or slow superluminal jet features propagating through a twisted jet with two sharp bends of about 90 deg. within the innermost three-milliarcsecond jet structure. Proper motion estimates from the data presented here allow us to constrain the jet viewing angle to values < 9 deg., and the bulk Lorentz factor to be between 2 and 4.Comment: 11 pages, 12 figures. Accepted for publication in A&

    MOJAVE: Monitoring of Jets in AGN with VLBA Experiments. VII. Blazar Jet Acceleration

    Full text link
    We discuss acceleration measurements for a large sample of extragalactic radio jets from the MOJAVE program which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of Active Galactic Nuclei (AGN). Accelerations are measured from the apparent motion of individual jet features or "components" which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydro-dynamical processes for propagating shocks may also play a role. About half of the components show "non-radial" motion, or a misalignment between the component's structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment.Comment: 17 pages, 11 figures, 1 table, accepted by the Astrophysical Journa

    The Radio/Optical Catalog of the SSA13 Field

    Get PDF
    We present a 1.4-GHz catalog of 810 radio sources (560 sources in the complete sample) with 1.8" resolution found within a 17' radius in the SSA13 field (RA=13h12m,DEC=42d38'). The radio image from the VLA has an rms noise level of 4.82 microJy/beam at the field center, and Subaru optical images in r-band (6300A) and z-band (9200A) have a three-sigma detection magnitude of 26.1 and 24.9, respectively. 88% of the radio sources are identified with an optical counterpart, and there is significantly more reddening for objects fainter than 24-mag. The radio and optical parameters are tabulated, and source morphologies are displayed by radio contours overlaying optical false-color images. The radio structures show a wealth of complexity and these are classified into a small number of categories. About one-third of the radio sources are larger than 1.2" and their orientation is often similar to that of the associated galaxy or binary-galaxy system. The density of sources in the SSA13 field above 75 microJy is 0.40 per square arcmin, with a slope of -2.43 in the differential counts. The radio spectral index may steepen for sources below 75 microJy. We estimate that at most 40% of the microJansky radio sources are dominated by AGN processes.Comment: 50 pages, 14 figures of which fig 6 contains 33 parts. In press, Astrophysical Journal, Supp

    Kinematics of parsec-scale structures in AGN: the 2cm VLBA Survey

    Get PDF
    We are investigating the kinematics of jets in active galactic nuclei on parsec scales by studying a representative population of sources. This study is being carried out using the Very Long Baseline Array at 15 GHz, with more than 800 images taken since 1994. In this contribution we present an overview of the diversity of kinematics for a complete sample of sources.Comment: Proceedings of the 6th European VLBI Network Symposium, Ros E., Porcas R.W., Lobanov, A.P., & Zensus, J.A. (eds), MPIfR, Bonn, Germany. 2 pages, 3 figures, needs evn2002.cls style fil

    Intrinsic Brightness Temperatures of AGN Jets

    Get PDF
    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of Active Galactic Nuclei (AGN). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGN to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, T_int = 3 x 10^10 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2 x 10^11 K, which is well in excess of the equipartition temperature. In this state, we estimate the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~ 10^5. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature and/or the assumption of equipartition may lead to large scatter or systematic errors in the derived values.Comment: 4 pages, 2 figures, Accepted to Appear in ApJ Letter

    Sub-milliarcsecond Imaging of Quasars and AGN

    Get PDF
    We have used the VLBA at 15 GHz to image the structure of 132 strong compact AGN and quasars with a resolution better than one milliarcsecond and a dynamic range typically exceeding 1000 to 1. These observations were made as part of a program to investigate the sub-parsec structure of quasars and AGN and to study the changes in their structure with time. Many of the sources included in our study, particularly those located south of +35 degrees, have not been previously imaged with milliarcsecond resolution. Each of the sources has been observed at multiple epochs. In this paper we show images of each of the 132 sources which we have observed. For each source we present data at the epoch which had the best quality data. The milliarcsecond jets generally appear one-sided but two-sided structure is often found in lower luminosity radio galaxies and in high luminosity quasars with gigahertz peaked spectra. Usually the structure is unresolved along the direction perpendicular to the jet, but a few sources have broad plumes. In some low luminosity radio galaxies, the structure appears more symmetric at 2 cm than at long wavelengths. The apparent long wavelength symmetry in these sources is probably due to absorption by intervening material. A few sources contain only a single component with any secondary feature at least a thousand times weaker. We find no obvious correlation of radio morphology and the detection of gamma-ray emission by EGRET.Comment: 19 pages, 3 tables, 3 figures. Figure 2 (132 contour diagrams) is long and is omitted here. Figure 2 may be viewed at http://www.cv.nrao.edu/2cmsurvey/ In press, Astronomical Journal, April 199
    corecore