2,014 research outputs found
Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS 1402+044
We investigate the frequency-dependent radio properties of the jet of the
luminous high-redshift (z = 3.2) radio quasar PKS 1402+044 (J1405+0415) by
means of radio interferometric observations. The observational data were
obtained with the VLBI Space Observatory Programme (VSOP) at 1.6 and 5 GHz,
supplemented by other multi-frequency observations with the Very Long Baseline
Array (VLBA; 2.3, 8.4, and 15 GHz) and the Very Large Array (VLA; 1.4, 5, 15,
and 43 GHz). The observations span a period of 7 years. We find that the
luminous high-redshift quasar PKS 1402+044 has a pronounced "core-jet"
morphology from the parsec to the kilo-parsec scales. The jet shows a steeper
spectral index and lower brightness temperature with increasing distance from
the jet core. The variation of brightness temperature agrees well with the
shock-in-jet model. Assuming that the jet is collimated by the ambient magnetic
field, we estimate the mass of the central object as ~10^9 M_sun. The upper
limit of the jet proper motion of PKS 1402+044 is 0.03 mas/yr (~3c) in the
east-west direction.Comment: 9 pages, 6 figures
Optically Faint Microjansky Radio Sources
We report on the identifications of radio sources from our survey of the
Hubble Deep Field and the SSA13 fields, both of which comprise the deepest
radio surveys to date at 1.4 GHz and 8.5 GHz respectively. About 80% of the
microjansky radio sources are associated with moderate redshift starburst
galaxies or AGNs within the I magnitude range of 17 to 24 with a median of I =
22 mag. Thirty-one (20%) of the radio sources are: 1) fainter than 25 mag,
with two objects in the HDF 28.5, 2) often identified with very red
objects 4, and 3) not significantly different in radio properties than
the brighter objects. We suggest that most of these objects are associated with
heavily obscured starburst galaxies with redshifts between 1 and 3. However,
other mechanisms are discussed and cannot be ruled out with the present
observations.Comment: to appear in Astrophysical Journal Letters, 3 figures, 1 tabl
Variability and Velocity of Superluminal Sources
We investigate the relation between the Doppler factor determined from
variations in total flux at 22 and 37 GHz, and the apparent transverse velocity
determined from VLBA observations at 2 cm. The data are consistent with the
relativistic beaming theory for compact radio sources, in that the distribution
of beta_{app}/delta_{var}, for 30 quasars, is roughly consistent with a Monte
Carlo simulation. The intrinsic temperature appears to be ~2x10^{10} K, close
to the "equipartition value" calculated by Readhead (1994). We deduce the
distribution of Lorentz factors for a group of 48 sources; the values range up
to about gamma=40.Comment: To be published in "Radio Astronomy at the Fringe", ASP Conf. Ser.
Vol. 300, J. A. Zensus, M. H. Cohen, & E. Ros (eds.), 8 pages, 3 figures,
needs rafringe.st
The milliarcsecond-scale jet of PKS 0735+178 during quiescence
We present polarimetric 5 GHz to 43 GHz VLBI observations of the BL Lacertae
object PKS 0735+178, spanning March 1996 to May 2000. Comparison with previous
and later observations suggests that the overall kinematic and structural
properties of the jet are greatly influenced by its activity. Time intervals of
enhanced activity, as reported before 1993 and after 2000 by other studies, are
followed by highly superluminal motion along a rectilinear jet. In contrast the
less active state in which we performed our observations, shows subluminal or
slow superluminal jet features propagating through a twisted jet with two sharp
bends of about 90 deg. within the innermost three-milliarcsecond jet structure.
Proper motion estimates from the data presented here allow us to constrain the
jet viewing angle to values < 9 deg., and the bulk Lorentz factor to be between
2 and 4.Comment: 11 pages, 12 figures. Accepted for publication in A&
MOJAVE: Monitoring of Jets in AGN with VLBA Experiments. VII. Blazar Jet Acceleration
We discuss acceleration measurements for a large sample of extragalactic
radio jets from the MOJAVE program which studies the parsec-scale jet structure
and kinematics of a complete, flux-density-limited sample of Active Galactic
Nuclei (AGN). Accelerations are measured from the apparent motion of individual
jet features or "components" which may represent patterns in the jet flow. We
find that significant accelerations are common both parallel and perpendicular
to the observed component velocities. Parallel accelerations, representing
changes in apparent speed, are generally larger than perpendicular acceleration
that represent changes in apparent direction. The trend for larger parallel
accelerations indicates that a significant fraction of these changes in
apparent speed are due to changes in intrinsic speed of the component rather
than changes in direction to the line of sight. We find an overall tendency for
components with increasing apparent speed to be closer to the base of their
jets than components with decreasing apparent speed. This suggests a link
between the observed pattern motions and the underlying flow which, in some
cases, may increase in speed close to the base and decrease in speed further
out; however, common hydro-dynamical processes for propagating shocks may also
play a role. About half of the components show "non-radial" motion, or a
misalignment between the component's structural position angle and its velocity
direction, and these misalignments generally better align the component motion
with the downstream emission. Perpendicular accelerations are closely linked
with non-radial motion. When observed together, perpendicular accelerations are
usually in the correct direction to have caused the observed misalignment.Comment: 17 pages, 11 figures, 1 table, accepted by the Astrophysical Journa
The Radio/Optical Catalog of the SSA13 Field
We present a 1.4-GHz catalog of 810 radio sources (560 sources in the
complete sample) with 1.8" resolution found within a 17' radius in the SSA13
field (RA=13h12m,DEC=42d38'). The radio image from the VLA has an rms noise
level of 4.82 microJy/beam at the field center, and Subaru optical images in
r-band (6300A) and z-band (9200A) have a three-sigma detection magnitude of
26.1 and 24.9, respectively. 88% of the radio sources are identified with an
optical counterpart, and there is significantly more reddening for objects
fainter than 24-mag. The radio and optical parameters are tabulated, and source
morphologies are displayed by radio contours overlaying optical false-color
images. The radio structures show a wealth of complexity and these are
classified into a small number of categories. About one-third of the radio
sources are larger than 1.2" and their orientation is often similar to that of
the associated galaxy or binary-galaxy system. The density of sources in the
SSA13 field above 75 microJy is 0.40 per square arcmin, with a slope of -2.43
in the differential counts. The radio spectral index may steepen for sources
below 75 microJy. We estimate that at most 40% of the microJansky radio sources
are dominated by AGN processes.Comment: 50 pages, 14 figures of which fig 6 contains 33 parts. In press,
Astrophysical Journal, Supp
Kinematics of parsec-scale structures in AGN: the 2cm VLBA Survey
We are investigating the kinematics of jets in active galactic nuclei on
parsec scales by studying a representative population of sources. This study is
being carried out using the Very Long Baseline Array at 15 GHz, with more than
800 images taken since 1994. In this contribution we present an overview of the
diversity of kinematics for a complete sample of sources.Comment: Proceedings of the 6th European VLBI Network Symposium, Ros E.,
Porcas R.W., Lobanov, A.P., & Zensus, J.A. (eds), MPIfR, Bonn, Germany. 2
pages, 3 figures, needs evn2002.cls style fil
Intrinsic Brightness Temperatures of AGN Jets
We present a new method for studying the intrinsic brightness temperatures of
the parsec-scale jet cores of Active Galactic Nuclei (AGN). Our method uses
observed superluminal motions and observed brightness temperatures for a large
sample of AGN to constrain the characteristic intrinsic brightness temperature
of the sample as a whole. To study changes in intrinsic brightness temperature,
we assume that the Doppler factors of individual jets are constant in time as
justified by their relatively small changes in observed flux density. We find
that in their median-low brightness temperature state, the sources in our
sample have a narrow range of intrinsic brightness temperatures centered on a
characteristic temperature, T_int = 3 x 10^10 K, which is close to the value
expected for equipartition, when the energy in the radiating particles equals
the energy stored in the magnetic fields. However, in their maximum brightness
state, we find that sources in our sample have a characteristic intrinsic
brightness temperature greater than 2 x 10^11 K, which is well in excess of the
equipartition temperature. In this state, we estimate the energy in radiating
particles exceeds the energy in the magnetic field by a factor of ~ 10^5. We
suggest that the excess of particle energy when sources are in their maximum
brightness state is due to injection or acceleration of particles at the base
of the jet. Our results suggest that the common method of estimating jet
Doppler factors by using a single measurement of observed brightness
temperature and/or the assumption of equipartition may lead to large scatter or
systematic errors in the derived values.Comment: 4 pages, 2 figures, Accepted to Appear in ApJ Letter
Sub-milliarcsecond Imaging of Quasars and AGN
We have used the VLBA at 15 GHz to image the structure of 132 strong compact
AGN and quasars with a resolution better than one milliarcsecond and a dynamic
range typically exceeding 1000 to 1. These observations were made as part of a
program to investigate the sub-parsec structure of quasars and AGN and to study
the changes in their structure with time. Many of the sources included in our
study, particularly those located south of +35 degrees, have not been
previously imaged with milliarcsecond resolution. Each of the sources has been
observed at multiple epochs. In this paper we show images of each of the 132
sources which we have observed. For each source we present data at the epoch
which had the best quality data. The milliarcsecond jets generally appear
one-sided but two-sided structure is often found in lower luminosity radio
galaxies and in high luminosity quasars with gigahertz peaked spectra. Usually
the structure is unresolved along the direction perpendicular to the jet, but a
few sources have broad plumes. In some low luminosity radio galaxies, the
structure appears more symmetric at 2 cm than at long wavelengths. The apparent
long wavelength symmetry in these sources is probably due to absorption by
intervening material. A few sources contain only a single component with any
secondary feature at least a thousand times weaker. We find no obvious
correlation of radio morphology and the detection of gamma-ray emission by
EGRET.Comment: 19 pages, 3 tables, 3 figures. Figure 2 (132 contour diagrams) is
long and is omitted here. Figure 2 may be viewed at
http://www.cv.nrao.edu/2cmsurvey/ In press, Astronomical Journal, April 199
- …