532 research outputs found
Are Interaural Time and Level Differences Represented by Independent or Integrated Codes in the Human Auditory Cortex?
Sound localization is important for orienting and focusing attention and for segregating sounds from different sources in the environment. In humans, horizontal sound localization mainly relies on interaural differences in sound arrival time and sound level. Despite their perceptual importance, the neural processing of interaural time and level differences (ITDs and ILDs) remains poorly understood. Animal studies suggest that, in the brainstem, ITDs and ILDs are processed independently by different specialized circuits. The aim of the current study was to investigate whether, at higher processing levels, they remain independent or are integrated into a common code of sound laterality. For that, we measured late auditory cortical potentials in response to changes in sound lateralization elicited by perceptually matched changes in ITD and/or ILD. The responses to the ITD and ILD changes exhibited significant morphological differences. At the same time, however, they originated from overlapping areas of the cortex and showed clear evidence for functional coupling. These results suggest that the auditory cortex contains an integrated code of sound laterality, but also retains independent information about ITD and ILD cues. This cue-related information might be used to assess how consistent the cues are, and thus, how likely they would have arisen from the same source
The human 'pitch center' responds differently to iterated noise and Huggins pitch
A magnetoencephalographic marker for pitch analysis (the pitch onset response) has been reported for different types of pitch-evoking stimuli, irrespective of whether the acoustic cues for pitch are monaurally or binaurally produced. It is claimed that the pitch onset response reflects a common cortical representation for pitch, putatively in lateral Heschl's gyrus. The result of this functional MRI study sheds doubt on this assertion. We report a direct comparison between iterated ripple noise and Huggins pitch in which we reveal a different pattern of auditory cortical activation associated with each pitch stimulus, even when individual variability in structure-function relations is accounted for. Our results suggest it may be premature to assume that lateral Heschl's gyrus is a universal pitch center
Studies of the Giant Dipole Resonance in Al, Ca, Fe, Ni and Pb with high energy-resolution inelastic proton scattering under 0
A survey of the fine structure of the Isovector Giant Dipole Resonance
(IVGDR) was performed, using the recently commissioned zero-degree facility of
the K600 magnetic spectrometer at iThemba LABS. Inelastic proton scattering at
an incident energy of 200 MeV was measured on Al, Ca, Fe,
Ni and Pb. A high energy resolution (
40 keV FWHM) could be achieved after utilising faint-beam and
dispersion-matching techniques. Considerable fine structure is observed in the
energy region of the IVGDR and characteristic energy scales are extracted from
the experimental data by means of a wavelet analysis. The comparison with
Quasiparticle-Phonon Model (QPM) calculations provides insight into the
relevance of different giant resonance decay mechanisms. Photoabsorption cross
sections derived from the data assuming dominance of relativistic Coulomb
excitation are in fair agreement with previous work using real photons.Comment: 15 pages, 15 figure
Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab ``infusion group''
We observed two cases of progressive multifocal leukoencephalopathy (PML) that occurred in the same infusion group. The group consisted of four patients with relapsing-remitting multiple sclerosis (RRMS) who had been treated with natalizumab (NAT) in the same medical practice for more than four years at the same times and in the same room, raising concerns about viral transmission between members of the infusion group. DNA amplification and sequence comparison of the non-coding control region (NCCR) of JC virus (JCV) present in cerebrospinal fluid (CSF) samples from PML patients #1 and #2 revealed that the amplified JCV sequences differed from the JCV archetype. The NCRR of the viral DNA was unique to each patient, arguing against the possibility of viral transmission between patients. Statistical considerations predict that similar co-occurrences of PML are likely to happen in the future
Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab ``infusion group''
We observed two cases of progressive multifocal leukoencephalopathy (PML) that occurred in the same infusion group. The group consisted of four patients with relapsing-remitting multiple sclerosis (RRMS) who had been treated with natalizumab (NAT) in the same medical practice for more than four years at the same times and in the same room, raising concerns about viral transmission between members of the infusion group. DNA amplification and sequence comparison of the non-coding control region (NCCR) of JC virus (JCV) present in cerebrospinal fluid (CSF) samples from PML patients #1 and #2 revealed that the amplified JCV sequences differed from the JCV archetype. The NCRR of the viral DNA was unique to each patient, arguing against the possibility of viral transmission between patients. Statistical considerations predict that similar co-occurrences of PML are likely to happen in the future
Low-energy electric dipole response in 120Sn
The electric dipole strength in 120Sn has been extracted from proton
inelastic scattering experiments at E_p = 295 MeV and at forward angles
including 0 degree. Below neutron threshoild it differs from the results of a
120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV.
The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and
is more than three times larger than what is observed with the (gamma,gamma')
reaction. This implies a strong fragmentation of the E1 strength and/or small
ground state branching ratios of the excited 1- states.Comment: 7 pages, 6 figure
Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid.
Background
Immunoglobulin G (IgG) effector functions are regulated by the composition of glycans attached to a conserved N-glycosylation site in the Fc part. Intrathecal production of IgG, especially IgG1, is a hallmark of multiple sclerosis (MS), but nothing is known about IgG Fc glycosylation in MS and in cerebrospinal fluid (CSF) in general.
Methods
We applied mass spectrometry of tryptic Fc glycopeptides to analyze IgG Fc glycosylation (sialylation, galactosylation, fucosylation, and bisecting N-acetylglucosamine (GlcNAc)) in 48 paired CSF and serum samples from adult patients with MS or a first demyelinating event highly suggestive of MS (designated as MS cases), and from healthy volunteers and patients with other non-inflammatory diseases (control group). p values were adjusted for multiple testing.
Results
Our experiments revealed four main results. First, IgG1 glycosylation patterns were different in CSF vs. serum, in the MS group and even in control donors without intrathecal IgG synthesis. Second, in MS patients vs. controls, IgG1 glycosylation patterns were altered in CSF, but not in serum. Specifically, in CSF from the MS group, bisecting GlcNAc were elevated, and afucosylation and galactosylation were reduced. Elevated bisecting GlcNAc and reduced galactosylation are known to enhance IgG effector functions. Third, hypothesis-free regression analysis revealed that alterations of afucosylation and bisecting GlcNAc in CSF from MS cases peaked 2â3 months after the last relapse. Fourth, CSF IgG1 glycosylation correlated with the degree of intrathecal IgG synthesis and CSF cell count.
Conclusions
The CNS compartment as well as the inflammatory milieu in MS affect IgG1 Fc glycosylation. In MS, the CSF IgG1 glycosylation has features that enhance Fc effector functions
Very late-onset neuromyelitis optica spectrum disorder beyond the age of 75
Aquaporin-4 antibody (AQP4-Ab)-positive neuromyelitis optica spectrum disorder (NMOSD) is a rare but often severe autoimmune disease with median onset around 40Â years of age. We report characteristics of three very-late-onset NMOSD (including complete NMO) patients >75Â years of age, in whom this diagnosis initially seemed unlikely because of their age and age-associated concomitant diseases, and briefly review the literature. All three patients, aged 79, 82 and 88 years, presented with a spinal cord syndrome as the first clinical manifestation of AQP4-Ab-positive NMOSD. They all had severe relapses unless immunosuppressive therapy was initiated, and one untreated patient died of a fatal NMOSD course. Two patients developed side effects of immunosuppression. We conclude that a first manifestation of NMOSD should be considered even in patients beyond the age of 75 years with a compatible syndrome, especially longitudinally extensive myelitis. Early diagnosis and treatment are feasible and highly relevant. Special attention is warranted in the elderly to recognize adverse effects of immunosuppressive therapies as early as possible
- âŠ