1,553 research outputs found

    Decision Making for Different Types of Variation in a Manufacturing System

    Get PDF
    Common cause variation: Natural part of the process; Acting on process. Special cause variation: From external sources; searching and mitigating causes

    Light curing time reduction: in vitro evaluation of new intensive light-emitting diode curing units

    Get PDF
    The aim of the present in vitro study was to establish the minimum necessary curing time to bond stainless steel brackets (Mini Diamond Twin™) using new, intensive, light-emitting diode (LED) curing units. Seventy-five bovine primary incisors were divided into five equal groups. A standard light curing adhesive (Transbond™ XT) was used to bond the stainless steel brackets using different lamps and curing times. Two groups were bonded using an intensive LED curing lamp (Ortholux™ LED) for 5 and 10 seconds. Two more groups were bonded using another intensive LED curing device (Ultra-Lume™ LED 5) also for 5 and 10 seconds. Finally, a high-output halogen lamp (Optilux™ 501) was used for 40 seconds to bond the final group, which served as a positive control. All teeth were fixed in hard acrylic and stored for 24 hours in water at 37°C. Shear bond strength (SBS) was measured using an Instron testing machine. Weibull distribution and analysis of variance were used to test for significant differences. The SBS values obtained were significantly different between groups (P < 0.001). When used for 10 seconds, the intensive LED curing units achieved sufficient SBS, comparable with the control. In contrast, 5 seconds resulted in significantly lower SBS. The adhesive remnant index (ARI) was not significantly affected. A curing time of 10 seconds was found to be sufficient to bond metallic brackets to incisors using intensive LED curing units. These new, comparatively inexpensive, curing lamps seem to be an advantageous alternative to conventional halogen lamps for bonding orthodontic bracket

    A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements

    Get PDF
    Sea-spray aerosols (SSA) are an important part of the climate system because of their effects on the global radiative budget – both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime, and precipitation. In terms of their global mass, SSA have the largest uncertainty of all aerosols. In this study we review 21 SSA source functions from the literature, several of which are used in current climate models. In addition, we propose a~new function. Even excluding outliers, the global annual SSA mass produced spans roughly 3–70 Pg yr<sup>−1</sup> for the different source functions, for particles with dry diameter <i>D</i><sub>p</sub> < 10 μm, with relatively little interannual variability for a given function. The FLEXPART Lagrangian particle dispersion model was run in backward mode for a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes in order to obtain modeled SSA concentrations. This allowed us to efficiently and simultaneously evaluate all 21 source functions against the measurements. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for improving the SSA source function parameterizations. The best source functions reproduced as much as 70% of the observed SSA concentration variability at several stations, which is comparable with "state of the art" aerosol models. The main driver of SSA production is wind, and we found that the best fit to the observation data could be obtained when the SSA production is proportional to <i>U</i><sub>10</sub><sup>3.5</sup>, where <i>U</i><sub>10</sub> is the source region averaged 10 m wind speed. A strong influence of SST on SSA production, with higher temperatures leading to higher production, could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. Our new source function with wind speed and temperature dependence gives a global SSA production for particles smaller than <i>D</i><sub>p</sub> < 10 μm of 9 Pg yr<sup>−1</sup>, and is the best fit to the observed concentrations

    Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    Get PDF
    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm&lt;sup&gt;−3&lt;/sup&gt; stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals

    Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    No full text
    International audienceIndividual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 ?m diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around ?27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles represent significant part of the analyzed cloud residual particles. This indicates that organic material may be poor ice nuclei, in contrast to polluted cases when ice crystal formation was observed at the same environmental conditions and when the cloud residual composition was dominated by mineral dust. The presented results suggest that the chemical composition of cloud nuclei and airmass origin have a strong impact on the ice formation through heterogeneous nucleation in supercooled clouds

    Aerosol-cirrus interactions: A number based phenomenon at all?

    Get PDF
    International audienceIn situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals) was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties form Anthropogenic Emissions) campaigns, performed in the Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint) and crystal residuals (Ncvi), whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200 cm-3, where the SH-maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200 cm-3, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds presents two alternative interactions between aerosols and cirrus. Either evaporating clouds are associated with a source of aerosol particles, or air pollution (high aerosol number density) retards evaporation rates

    Changes in aerosol properties during spring-summer period in the Arctic troposphere

    Get PDF
    The change in aerosol properties during the transition from the more polluted spring to the clean summer in the Arctic troposphere was studied. A six-year data set of observations from Ny-Ã…lesund on Svalbard, covering the months April through June, serve as the basis for the characterisation of this time period. In addition four-day-back trajectories were used to describe air mass histories. The observed transition in aerosol properties from an accumulation-mode dominated distribution to an Aitken-mode dominated distribution is discussed with respect to long-range transport and influences from natural and anthropogenic sources of aerosols and pertinent trace gases. Our study shows that the air-mass transport is an important factor modulating the physical and chemical properties observed. However, the air-mass transport cannot alone explain the annually repeated systematic and rather rapid change in aerosol properties, occurring within a limited time window of approximately 10 days. With a simplified phenomenological model, which delivers the nucleation potential for new-particle formation, we suggest that the rapid shift in aerosol microphysical properties between the Arctic spring and summer is mainly driven by the incoming solar radiation in concert with transport of precursor gases and changes in condensational sink
    • …
    corecore