291 research outputs found

    An optimised scalable synthesis of H2O@C60and a new synthesis of H2@C60

    No full text
    New high-yielding synthetic routes to the small-molecule endofullerenes H2O@C60, D2O@C60 and H2@C60 are described. The use of high temperatures and pressures for the endohedral molecule incorporation are avoided. A new partial closure step using PPh3, and final suturing using a novel Diels–Alder/retro-Diels–Alder sequence are amongst the advances reported

    Hanbury Brown and Twiss correlations in atoms scattered from colliding condensates

    Full text link
    Low energy elastic scattering between clouds of Bose condensed atoms leads to the well known s-wave halo with atoms emerging in all directions from the collision zone. In this paper we discuss the emergence of Hanbury Brown and Twiss coincidences between atoms scattered in nearly parallel directions. We develop a simple model that explains the observations in terms of an interference involving two pairs of atoms each associated with the elementary s wave scattering process.Comment: Minor corrections. reference update

    Observation of atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein Condensates

    Full text link
    We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four wave mixing of de Broglie waves. We find a clear correlation between atoms with opposite momenta, demonstrating pair production in the scattering process. We also observe a Hanbury Brown and Twiss correlation for collinear momenta, which permits an independent measurement of the size of the pair production source and thus the size of the spatial mode. The back to back pairs occupy very nearly two oppositely directed spatial modes, a promising feature for future quantum optics experiments.Comment: A few typos have been correcte

    Producing and Detecting Correlated atoms

    Full text link
    We discuss experiments to produce and detect atom correlations in a degenerate or nearly degenerate gas of neutral atoms. First we treat the atomic analog of the celebrated Hanbury Brown Twiss experiment, in which atom correlations result simply from interference effects without any atom interactions.We have performed this experiment for both bosons and fermions. Next we show how atom interactions produce correlated atoms using the atomic analog of spontaneous four-wavemixing. Finally, we briefly mention experiments on a one dimensional gas on an atom chip in which correlation effects due to both interference and interactions have been observed.Comment: to appear in conference proceedings "Atomic Physics 20

    Radiative and non-radiative local density of states on disordered plasmonic films

    Full text link
    We present numerical calculations of the Local Density of Optical States (LDOS) in the near field of disordered plasmonic films. The calculations are based on an integral volume method, that takes into account polarization and retardation effects, and allows us to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS is dominated by non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial distributions

    An XMM-Newton view of Planetary Nebulae in the Small Magellanic Cloud. The X-ray luminous central star of SMP SMC 22

    Full text link
    During an X-ray survey of the Small Magellanic Cloud, carried out with the XMM-Newton satellite, we detected significant soft X-ray emission from the central star of the high-excitation planetary nebula SMP SMC 22. Its very soft spectrum is well fit with a non local thermodynamical equilibrium model atmosphere composed of H, He, C, N, and O, with abundances equal to those inferred from studies of its nebular lines. The derived effective temperature of 1.5x10^5 K is in good agreement with that found from the optical/UV data. The unabsorbed flux in the 0.1-0.5 keV range is about 3x10^{-11} erg cm^-2 s^-1, corresponding to a luminosity of 1.2x10^37 erg/s at the distance of 60 kpc. We also searched for X-ray emission from a large number of SMC planetary nebulae, confirming the previous detection of SMP SMC 25 with a luminosity of (0.2-6)x10^35 erg/s (0.1-1 keV). For the remaining objects that were not detected, we derived flux upper limits corresponding to luminosity values from several tens to hundreds times smaller than that of SMP SMC 22. The exceptionally high X-ray luminosity of SMP SMC 22 is probably due to the high mass of its central star, quickly evolving toward the white dwarf's cooling branch, and to a small intrinsic absorption in the nebula itself.Comment: Accepted for publication on Astronomy and Astrophysic

    Camparison of the Hanbury Brown-Twiss effect for bosons and fermions

    Full text link
    Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in light emitted by a chaotic source, highlighting the importance of two-photon correlations and stimulating the development of modern quantum optics . The quantum interpretation of bunching relies upon the constructive interference between amplitudes involving two indistinguishable photons, and its additive character is intimately linked to the Bose nature of photons. Advances in atom cooling and detection have led to the observation and full characterisation of the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions should reveal an antibunching effect, i.e., a tendency to avoid each other. Antibunching of fermions is associated with destructive two-particle interference and is related to the Pauli principle forbidding more than one identical fermion to occupy the same quantum state. Here we report an experimental comparison of the fermion and the boson HBT effects realised in the same apparatus with two different isotopes of helium, 3He (a fermion) and 4He (a boson). Ordinary attractive or repulsive interactions between atoms are negligible, and the contrasting bunching and antibunching behaviours can be fully attributed to the different quantum statistics. Our result shows how atom-atom correlation measurements can be used not only for revealing details in the spatial density, or momentum correlations in an atomic ensemble, but also to directly observe phase effects linked to the quantum statistics in a many body system. It may thus find applications to study more exotic situations >.Comment: Nature 445, 402 (2007). V2 includes the supplementary informatio

    The Large-Scale Polarization Explorer (LSPE)

    Full text link
    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite
    • …
    corecore