326 research outputs found

    Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella.

    Get PDF
    The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation

    Payments for ecosystem services in the tropics: a closer look at effectiveness and equity

    Get PDF
    We undertake a review of academic literature that examines the effectiveness and equity-related performance of PES initiatives targeting biodiversity conservation in tropical and sub-tropical countries. We investigate the key features of such analyses as regards their analytical and methodological approach and we identify emerging lessons from PES practice, leading to a new suggested research agenda. Our results indicate that analyses of PES effectiveness have to date focused on either ecosystem service provision or habitat proxies, with only half of them making explicit assessment of additionality and most describing that payments have been beneficial for land cover and biodiversity. Studies evaluating the impact of PES on livelihoods suggest more negative outcomes, with an uneven treatment of the procedural and distributive considerations of scheme design and payment distribution, and a large heterogeneity of evaluative frameworks. We propose an agenda for future PES research based on the emerging interest in assessing environmental outcomes more rigorously and documenting social impacts in a more comparative and contextually situated form

    Tularemia Outbreak Investigation in Kosovo: Case Control and Environmental Studies

    Get PDF
    A large outbreak of tularemia occurred in Kosovo in the early postwar period, 1999-2000. Epidemiologic and environmental investigations were conducted to identify sources of infection, modes of transmission, and household risk factors. Case and control status was verified by enzyme-linked immunosorbent assay, Western blot, and microagglutination assay. A total of 327 serologically confirmed cases of tularemia pharyngitis and cervical lymphadenitis were identified in 21 of 29 Kosovo municipalities. Matched analysis of 46 case households and 76 control households suggested that infection was transmitted through contaminated food or water and that the source of infection was rodents. Environmental circumstances in war-torn Kosovo led to epizootic rodent tularemia and its spread to resettled rural populations living under circumstances of substandard housing, hygiene, and sanitation

    An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-control genetic studies of complex human diseases can be confounded by population stratification. This issue can be addressed using panels of ancestry informative markers (AIMs) that can provide substantial population substructure information. Previously, we described a panel of 128 SNP AIMs that were designed as a tool for ascertaining the origins of subjects from Europe, Sub-Saharan Africa, Americas, and East Asia.</p> <p>Results</p> <p>In this study, genotypes from Human Genome Diversity Panel populations were used to further evaluate a 93 SNP AIM panel, a subset of the 128 AIMS set, for distinguishing continental origins. Using both model-based and relatively model-independent methods, we here confirm the ability of this AIM set to distinguish diverse population groups that were not previously evaluated. This study included multiple population groups from Oceana, South Asia, East Asia, Sub-Saharan Africa, North and South America, and Europe. In addition, the 93 AIM set provides population substructure information that can, for example, distinguish Arab and Ashkenazi from Northern European population groups and Pygmy from other Sub-Saharan African population groups.</p> <p>Conclusion</p> <p>These data provide additional support for using the 93 AIM set to efficiently identify continental subject groups for genetic studies, to identify study population outliers, and to control for admixture in association studies.</p

    ALFRED: an allele frequency resource for research and teaching

    Get PDF
    ALFRED (http://alfred.med.yale.edu) is a free, web accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. Currently, ALFRED has allele frequency tables on over 663 400 polymorphic sites; 170 of them have frequency tables for more than 100 different population samples. In ALFRED, a population may have multiple samples with each ‘sample’ consisting of many individuals on which an allele frequency is based. There are 3566 population samples from 710 different populations with allele frequency tables on at least one polymorphism. Fifty of those population samples have allele frequency data for over 650 000 polymorphisms. Records also have active links to relevant resources (dbSNP, PharmGKB, OMIM, Ethnologue, etc.). The flexible search options and data display and download capabilities available through the web interface allow easy access to the large quantity of high-quality data in ALFRED

    Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen.

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts causing acute and chronic infectious diseases. Although the pathogen-host interaction is well understood, little is known about the evolutionary origin of the infection strategy manifested by Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that to date represents the closest relative of pathogenic Bartonella species. Comparative genomics revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral functions, but acquired specific virulence factors and expanded a vertically inherited gene family for harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream. This study highlights the importance of comparative genomics among pathogens and non-pathogenic relatives to understand disease emergence within an evolutionary-ecological framework

    Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays

    Get PDF
    Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies
    corecore