79 research outputs found

    Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants

    Get PDF
    BACKGROUND: Autism spectrum disorder (ASD) is highly heritable, yet genome-wide association studies (GWAS), copy number variation screens, and candidate gene association studies have found no single factor accounting for a large percentage of genetic risk. ASD trio exome sequencing studies have revealed genes with recurrent de novo loss-of-function variants as strong risk factors, but there are relatively few recurrently affected genes while as many as 1000 genes are predicted to play a role. As such, it is critical to identify the remaining rare and low-frequency variants contributing to ASD. METHODS: We have utilized an approach of prioritization of genes by GWAS and follow-up with massively parallel sequencing in a case-control cohort. Using a previously reported ASD noise reduction GWAS analyses, we prioritized 837 RefSeq genes for custom targeting and sequencing. We sequenced the coding regions of those genes in 2071 ASD cases and 904 controls of European white ancestry. We applied comprehensive annotation to identify single variants which could confer ASD risk and also gene-based association analysis to identify sets of rare variants associated with ASD. RESULTS: We identified a significant over-representation of rare loss-of-function variants in genes previously associated with ASD, including a de novo premature stop variant in the well-established ASD candidate gene RBFOX1. Furthermore, ASD cases were more likely to have two damaging missense variants in candidate genes than controls. Finally, gene-based rare variant association implicates genes functioning in excitatory neurotransmission and neurite outgrowth and guidance pathways including CACNAD2, KCNH7, and NRXN1. CONCLUSIONS: We find suggestive evidence that rare variants in synaptic genes are associated with ASD and that loss-of-function mutations in ASD candidate genes are a major risk factor, and we implicate damaging mutations in glutamate signaling receptors and neuronal adhesion and guidance molecules. Furthermore, the role of de novo mutations in ASD remains to be fully investigated as we identified the first reported protein-truncating variant in RBFOX1 in ASD. Overall, this work, combined with others in the field, suggests a convergence of genes and molecular pathways underlying ASD etiology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0034-z) contains supplementary material, which is available to authorized users

    A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism.</p> <p>Methods</p> <p>GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology.</p> <p>Results</p> <p>Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.</p> <p>Conclusions</p> <p>As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.</p

    An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD.</p> <p>Methods</p> <p>We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set.</p> <p>Results</p> <p>One SNP, rs17321050, in the transducin β-like 1X-linked (<it>TBL1X</it>) gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (<it>P </it>value = 4.86 × 10<sup>-6</sup>) and joint analysis (<it>P </it>value = 4.53 × 10<sup>-6</sup>) in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (<it>P </it>= 5.89 × 10<sup>-3</sup>) and passed the replication threshold in the validation data set (<it>P </it>= 2.56 × 10<sup>-4</sup>). Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis.</p> <p>Conclusions</p> <p><it>TBL1X </it>is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing <it>TBL1X </it>and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that <it>TBL1X </it>may play a role in ASD risk.</p

    Copy Number Variants in Extended Autism Spectrum Disorder Families Reveal Candidates Potentially Involved in Autism Risk

    Get PDF
    Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology

    Overview of systematic reviews of therapeutic ranges : methodologies and recommendations for practice

    Get PDF
    BACKGROUND: Many medicines are dosed to achieve a particular therapeutic range, and monitored using therapeutic drug monitoring (TDM). The evidence base for a therapeutic range can be evaluated using systematic reviews, to ensure it continues to reflect current indications, doses, routes and formulations, as well as updated adverse effect data. There is no consensus on the optimal methodology for systematic reviews of therapeutic ranges. METHODS: An overview of systematic reviews of therapeutic ranges was undertaken. The following databases were used: Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts and Reviews of Effects (DARE) and MEDLINE. The published methodologies used when systematically reviewing the therapeutic range of a drug were analyzed. Step by step recommendations to optimize such systematic reviews are proposed. RESULTS: Ten systematic reviews that investigated the correlation between serum concentrations and clinical outcomes encompassing a variety of medicines and indications were assessed. There were significant variations in the methodologies used (including the search terms used, data extraction methods, assessment of bias, and statistical analyses undertaken). Therapeutic ranges should be population and indication specific and based on clinically relevant outcomes. Recommendations for future systematic reviews based on these findings have been developed. CONCLUSION: Evidence based therapeutic ranges have the potential to improve TDM practice. Current systematic reviews investigating therapeutic ranges have highly variable methodologies and there is no consensus of best practice when undertaking systematic reviews in this field. These recommendations meet a need not addressed by standard protocols

    Regional efforts to mitigate climate change in China: A multi-criteria assessment approach

    Get PDF
    The task of mitigating climate change is usually allocated through administrative regions in China. In order to put pressure on regions that perform poorly in mitigating climate changes and highlight regions with best-practice climate policies, this study explored a method to assess regional efforts on climate change mitigation at the sub-national level. A climate change mitigation index (CCMI) was developed with 15 objective indicators, which were divided into four categories, namely, emissions, efficiency, non-fossil energy, and climate policy. The indicators’ current level and recent development were measured for the first three categories. The index was applied to assess China’s provincial performance in climate protection based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Empirical results show that the middle Yangtze River area and southern coastal area perform better than other areas in mitigating climate change. The average performance of the northwest area in China is the worst. In addition, climate change mitigation performance has a negative linear correlation with energy self-sufficiency ratio but does not have a significant linear correlation with social development level. Therefore, regional resource endowments had better be paid much more attention in terms of mitigating climate change because regions with good resource endowments in China tend to perform poorly

    Dementia Revealed: Novel Chromosome 6 Locus for Late-Onset Alzheimer Disease Provides Genetic Evidence for Folate-Pathway Abnormalities

    Get PDF
    Genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) have consistently observed strong evidence of association with polymorphisms in APOE. However, until recently, variants at few other loci with statistically significant associations have replicated across studies. The present study combines data on 483,399 single nucleotide polymorphisms (SNPs) from a previously reported GWAS of 492 LOAD cases and 496 controls and from an independent set of 439 LOAD cases and 608 controls to strengthen power to identify novel genetic association signals. Associations exceeding the experiment-wide significance threshold () were replicated in an additional 1,338 cases and 2,003 controls. As expected, these analyses unequivocally confirmed APOE's risk effect (rs2075650, ). Additionally, the SNP rs11754661 at 151.2 Mb of chromosome 6q25.1 in the gene MTHFD1L (which encodes the methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like protein) was significantly associated with LOAD (; Bonferroni-corrected P = 0.022). Subsequent genotyping of SNPs in high linkage disequilibrium () with rs11754661 identified statistically significant associations in multiple SNPs (rs803424, P = 0.016; rs2073067, P = 0.03; rs2072064, P = 0.035), reducing the likelihood of association due to genotyping error. In the replication case-control set, we observed an association of rs11754661 in the same direction as the previous association at P = 0.002 ( in combined analysis of discovery and replication sets), with associations of similar statistical significance at several adjacent SNPs (rs17349743, P = 0.005; rs803422, P = 0.004). In summary, we observed and replicated a novel statistically significant association in MTHFD1L, a gene involved in the tetrahydrofolate synthesis pathway. This finding is noteworthy, as MTHFD1L may play a role in the generation of methionine from homocysteine and influence homocysteine-related pathways and as levels of homocysteine are a significant risk factor for LOAD development

    REPORT Whole-Exome Sequencing Links a Variant in DHDDS to Retinitis Pigmentosa

    Get PDF
    Increasingly, mutations in genes causing Mendelian disease will be supported by individual and small families only; however, exome sequencing studies have thus far focused on syndromic phenotypes characterized by low locus heterogeneity. In contrast, retinitis pigmentosa (RP) is caused by &gt;50 known genes, which still explain only half of the clinical cases. In a single, one-generation, nonsyndromic RP family, we have identified a gene, dehydrodolichol diphosphate synthase (DHDDS), demonstrating the power of combining whole-exome sequencing with rapid in vivo studies. DHDDS is a highly conserved essential enzyme for dolichol synthesis, permitting global N-linked glycosylation. Zebrafish studies showed virtually identical photoreceptor defects as observed with N-linked glycosylation-interfering mutations in the light-sensing protein rhodopsin. The identified Lys42Glu variant likely arose from an ancestral founder, because eight of the nine identified alleles in 27,174 control chromosomes were of confirmed Ashkenazi Jewish ethnicity. These findings demonstrate the power of exome sequencing linked to functional studies when faced with challenging study designs and, importantly, link RP to the pathways of N-linked glycosylation, which promise new avenues for therapeutic interventions. Retinitis pigmentosa (RP) refers to a large group of genetically heterogeneous retinal degenerative disorders characterized by early rod photoreceptor dysfunction followed by progressive rod and cone photoreceptor dysfunction and photoreceptor death (MIM 268000). Impaired night vision followed by impaired peripheral vision generally starts in adolescence to young adulthood, with subsequent impaired central vision in later life. We studied a family of Ashkenazi Jewish (AJ) origin in which three out of four siblings (two females and one male) were diagnosed with RP in their teenage years ( To identify the genetic cause of this likely recessive subtype of RP, we screened all genes known to harbor RP mutations and found that they were negative for mutations. Classic linkage approaches were not applicable because of the size of the nonconsanguineous family, so we performed whole-exome sequencing in the three affected siblings and one unaffected sibling (Whole Human Exome Capture kit, Roche). We produced approximately 10 gigabases (Gb) of paired-end 75 bp sequence reads per individual on the Illumina GAII platform. To test the overall quality of the sequence data, we compared the genotypes of variants found in the sequence data to variants derived from genotyping via a genome-wide SN

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses
    corecore