Abstract

Increasingly, mutations in genes causing Mendelian disease will be supported by individual and small families only; however, exome sequencing studies have thus far focused on syndromic phenotypes characterized by low locus heterogeneity. In contrast, retinitis pigmentosa (RP) is caused by >50 known genes, which still explain only half of the clinical cases. In a single, one-generation, nonsyndromic RP family, we have identified a gene, dehydrodolichol diphosphate synthase (DHDDS), demonstrating the power of combining whole-exome sequencing with rapid in vivo studies. DHDDS is a highly conserved essential enzyme for dolichol synthesis, permitting global N-linked glycosylation. Zebrafish studies showed virtually identical photoreceptor defects as observed with N-linked glycosylation-interfering mutations in the light-sensing protein rhodopsin. The identified Lys42Glu variant likely arose from an ancestral founder, because eight of the nine identified alleles in 27,174 control chromosomes were of confirmed Ashkenazi Jewish ethnicity. These findings demonstrate the power of exome sequencing linked to functional studies when faced with challenging study designs and, importantly, link RP to the pathways of N-linked glycosylation, which promise new avenues for therapeutic interventions. Retinitis pigmentosa (RP) refers to a large group of genetically heterogeneous retinal degenerative disorders characterized by early rod photoreceptor dysfunction followed by progressive rod and cone photoreceptor dysfunction and photoreceptor death (MIM 268000). Impaired night vision followed by impaired peripheral vision generally starts in adolescence to young adulthood, with subsequent impaired central vision in later life. We studied a family of Ashkenazi Jewish (AJ) origin in which three out of four siblings (two females and one male) were diagnosed with RP in their teenage years ( To identify the genetic cause of this likely recessive subtype of RP, we screened all genes known to harbor RP mutations and found that they were negative for mutations. Classic linkage approaches were not applicable because of the size of the nonconsanguineous family, so we performed whole-exome sequencing in the three affected siblings and one unaffected sibling (Whole Human Exome Capture kit, Roche). We produced approximately 10 gigabases (Gb) of paired-end 75 bp sequence reads per individual on the Illumina GAII platform. To test the overall quality of the sequence data, we compared the genotypes of variants found in the sequence data to variants derived from genotyping via a genome-wide SN

    Similar works