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Abstract

Background: Autism spectrum disorder (ASD) is highly heritable, yet genome-wide association studies (GWAS),
copy number variation screens, and candidate gene association studies have found no single factor accounting for
a large percentage of genetic risk. ASD trio exome sequencing studies have revealed genes with recurrent de novo
loss-of-function variants as strong risk factors, but there are relatively few recurrently affected genes while as many
as 1000 genes are predicted to play a role. As such, it is critical to identify the remaining rare and low-frequency
variants contributing to ASD.

Methods: We have utilized an approach of prioritization of genes by GWAS and follow-up with massively parallel
sequencing in a case-control cohort. Using a previously reported ASD noise reduction GWAS analyses, we prioritized
837 RefSeq genes for custom targeting and sequencing. We sequenced the coding regions of those genes in 2071
ASD cases and 904 controls of European white ancestry. We applied comprehensive annotation to identify single
variants which could confer ASD risk and also gene-based association analysis to identify sets of rare variants
associated with ASD.

Results: We identified a significant over-representation of rare loss-of-function variants in genes previously
associated with ASD, including a de novo premature stop variant in the well-established ASD candidate gene
RBFOX1. Furthermore, ASD cases were more likely to have two damaging missense variants in candidate genes than
controls. Finally, gene-based rare variant association implicates genes functioning in excitatory neurotransmission and
neurite outgrowth and guidance pathways including CACNAD2, KCNH7, and NRXN1.

Conclusions: We find suggestive evidence that rare variants in synaptic genes are associated with ASD and that
loss-of-function mutations in ASD candidate genes are a major risk factor, and we implicate damaging mutations in
glutamate signaling receptors and neuronal adhesion and guidance molecules. Furthermore, the role of de novo
mutations in ASD remains to be fully investigated as we identified the first reported protein-truncating variant in
RBFOX1 in ASD. Overall, this work, combined with others in the field, suggests a convergence of genes and molecular
pathways underlying ASD etiology.
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Background
Autism spectrum disorder (ASD) is a set of neurodeve-
lopmental conditions diagnosed on the basis of a triad of
symptoms: marked qualitative differences in social inter-
action, delayed or absent communication, and restricted
interests or repetitive behaviors [1]. ASD is highly pre-
valent, occurring with a prevalence of approximately 1
in 68 8-year-olds in the United States [2], and confers
significant costs to individuals and families. While the
underlying physiological causes are largely unknown,
twin concordance and family-based studies have shown
ASD to be highly heritable, suggesting a strong under-
lying genetic etiology [3–5]. Therefore, candidate gene
and common risk allele discovery has been a topic of
much research, and more than 100 genes and 50 gen-
omic loci have been implicated in autism by linkage ana-
lyses, copy number variation screens, and genome-wide
association studies [6]. These candidates include single
genes with mutations resulting in syndromes with ASD
phenotypes [7–9], large cytogenetic aberrations [10], mi-
croduplications and microdeletions [11–15], and asso-
ciated common alleles [16–20].
Overall, however, there has been limited replication

across studies, demonstrating lack of support for the hy-
pothesis that ASD is explained by common variants with
strong to moderate effects. Instead, the common disease-
rare variant (CDRV) hypothesis might better describe the
underlying genetic architecture of ASD [21–23]. Identifi-
cation of such rare genetic variants responsible for ASD
risk has only recently been made possible with the applica-
tion of massively parallel sequencing (MPS) technologies
such as whole-genome sequencing (WGS), whole-exome
sequencing (WES), and targeted region re-sequencing
[24]. These techniques have been successful in the identifi-
cation of the genetic causes of dozens of Mendelian disor-
ders [25]. In ASD, which is phenotypically and genetically
heterogeneous, WES studies thus far have focused pri-
marily on the identification of de novo variation in family-
based cohorts [26–32]. While this method has identified
several potential ASD risk genes and mutations, each
variant occurs at a low frequency in the population and
the studies do not replicate well.
In contrast to this WES in trios approach, our strategy

to detect rare functional variants in ASD is to apply
MPS to genes within regions that have been implicated
by common variant GWAS analysis in a large case-
control cohort. We prioritized regions of association
with GWAS-noise reduction (GWAS-NR) analyses of
ASD datasets [16, 17] for follow-up sequencing, since
disease-causing variants are likely not the common SNPs
genotyped in GWAS. Sequencing of all exons of 837
RefSeq genes, in 2071 cases and 904 controls, revealed a
significantly increased rate of stop gain/loss and splice
altering loss-of-function (LOF) mutations, in subsets of
candidate genes. Among the individual, LOF variants is
a novel de novo premature stop gain in RBFOX1 in an
ASD case. Our unique strategy supports the hypothesis
that LOF variants in previously implicated ASD genes,
including RBFOX1, and novel genes underlying the com-
plex genetic architecture of ASD.

Methods
Ethics statement
Individuals participating in this study have been collected
over the course of several years, and ethical protocols with
appropriate amendments have been approved. Individuals
have been ascertained at the John P. Hussman Institute for
Human Genomics (HIHG) at the University of Miami,
Miller School of Medicine (Miami, FL), the University of
South Carolina (Columbia, SC), and the Center for Human
Genetics Research at Vanderbilt University (Nashville, TN).
All participants were ascertained using protocols approved
by the appropriate Institutional Review Boards, and the
entire study falls under the University of Miami (UM)
Institutional Review Board (IRB). This study was approved
by the UM Medical Sciences IRB Committee B members:
Ofelia Alvarez, M.D., Abdul Mian, Ph.D., Jose Castro, M.D.,
Jean Raymond Dauphin, O.D., Jean Jose, D.O., Norman
Klein, J.D., Howard Landy, M.D., Stephen Richman, M.D.,
Eric Zetka, Pharm.D., and Liza Gordillo, M.S. In addition,
samples from the Autism Genetic Resource Exchange
(AGRE) and Simons Simplex Collection (SSC) were uti-
lized. The use of AGRE and SSC samples is covered under
the UM-IRB approved research protocol.

Sample collection
A total of 2399 unrelated individuals affected with ASD
were used in this study. Nine hundred fifty-six individ-
uals were recruited using Institutional Review Board ap-
proved protocols through the John P. Hussman Institute
for Human Genomics (HIHG) (912 individuals) at the
University of Miami, Miller School of Medicine (Miami,
FL) and the Center for Human Genetics Research at
Vanderbilt University (43 individuals) (Nashville, TN).
Criteria for inclusion for ASD-affected individuals were
as follows: 1—between 3 and 21 years of age, 2—an ASD
diagnosis using DSM-III-R or DSM-IV criteria [33]
supported by the Autism Diagnostic Interview (ADI-R)
[34], and 3—an IQ equivalent >35 or developmental
level >18 months as determined by the Vineland Adaptive
Behavior Scale (VABS) [35]. DNA was isolated from
these individuals from whole blood collected via
venipuncture.
Other ASD case DNA samples were included from the

Autism Genetic Resource Exchange (14 individuals) [36]
and the Simons Simplex Collection (1429 individuals) [37].
In addition, 1325 non-autistic control samples were

acquired across two sites for this study. First, 525
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individuals aged 4 to 21 years old were sampled through
the HIHG. Participants were screened for eligibility by a
questionnaire to determine whether the individual had
been diagnosed with or had a parent or sibling with a
developmental, behavioral, neurological, or other dis-
ability or physical conditions. If none of those conditions
were present, parents of young children or the partici-
pants were informed and signed the informed consent
and completed the Social Communication Questionnaire
[38, 39] to screen for potential ASD. Three hundred
twenty-six controls were part of a preterm birth study
from cord blood collected at the Centennial Medical
Center (Nashville, TN) from women aged from 18 to 40
years old with term pregnancies (>37 weeks gestation)
and live, singleton births. The remaining 474 controls
were obtained through the BioVu DNA repository at
Vanderbilt [40].

Targeted sequencing probe-set design
Regions to be targeted for sequencing in this study were
determined using criteria previously described [16]. Briefly,
the GWAS-NR algorithm was applied to two autism data-
sets and the top 5000 markers assorted into 2680 haplo-
type blocks [41] and 141 markers which were not in any
block. Following statistical analysis using the truncated
product method (TPM) of p values and a Monte Carlo
simulation, 1535 genetic loci met a threshold of p ≤ 0.05.
These regions were selected for follow-up sequencing in
this study.
For target enrichment, we designed an Agilent SureSelect

probe library using eArray web-based software (https://
earray.chem.agilent.com/earray/) by bait-tiling 120-bp
probes overlapping 60 bp. The targeted regions consisted
of all exons of 837 RefSeq genes overlapping with blocks
with p ≤ 0.05 TPM or nearest to significant intergenic
blocks (Additional file 1). Nearest genes were chosen since
GWAS-NR, by design, captures association from regions
that may not be in strict linkage disequilibrium with a
given SNP [16].

Massively parallel sequencing of targeted regions
Samples were prepared following Agilent and Illumina
protocols for in-solution SureSelect enrichment and
sequencing. Briefly, 3 μg of genomic DNA, quantified
using the Broad Range dsDNA Assay (Life Technologies,
Grand Island, NY), is fragmented in a 96-microTUBE
plate on the Covaris E210 (Covaris, Woburn, MA),
followed by the verification of the peak size distribution
ranging from 150 to 200 nucleotides using the LabChip
GX (PerkinElmer, Waltham, MA).
The sheared DNA is then prepared for Illumina sequen-

cing in 96-well plates using the Sciclone G3 NGS Liquid
Handling Workstation (PerkinElmer, Waltham, MA).
Capture hybridization begins with 500 ng of prepped
sampled library, mixed with blockers, buffer, and biotinyl-
ated RNA probes during a 24-h incubation at 65 °C.
Streptavidin beads bind the biotinylated RNA probes
to extract the desired captured library. The bead-
bound hybridized product is amplified and purified in
96-well plates using a Zephyr Compact Liquid Hand-
ling Workstation (PerkinElmer, Waltham, MA). The
final product is then verified for a single peak size ap-
proximately 300 to 325 bp using the LabChip GX prior
to sequencing.
All samples were indexed and multiplexed to run 7–11

samples per lane on the Illumina HiSeq 2000 (Illumina,
San Diego, CA) for paired-end 2 × 100 bp sequencing.
Raw sequence data was processed using the Illumina Run
Time Analysis base calling pipeline, initially with v1.7 and
later with v1.8.

Data analysis
Subsequent processing was accomplished with an in-house
sequencing data pipeline. This process includes alignment
to the hg19 reference genome with the Burrows-Wheeler
Aligner (BWA) [42], quality control with PICARD, and
genotype calling performed with the Genome Analysis
Toolkit (GATK) [43].
Sequencing quality control consisted of base quality

score recalibration across flow cells and instruments as
well as removal of duplicate reads resulting from PCR
library amplification bias. For high-confidence genotype
calling, we selected variants with a read depth greater
than 8X, a call rate of at least 90 % across all samples, a
log odds ratio under the trained Gaussian mixture model
(VQSLOD) ≥ −3 and normalized, Phred-scaled likelihood
of a reference genotype (PL) ≥200. The resulting alter-
ations were annotated with SeattleSeq (http://snp.gs.
washington.edu/SeattleSeqAnnotation137) and Polymorph-
ism Phenotyping v2 (PolyPhen-2) (http://genetics.bwh.
harvard.edu/pph2) [44]. LOF variants were defined as
stop gains, stop losses, or splice site alterations [45].

Sample quality control
From this total group of 3724 individuals, we excluded 6
samples with close relatedness or Mendelian inconsist-
encies identified by previously existing GWAS family
data [17], 15 with underperforming sequencing metrics
(less than 65 % of targeted bases covered at least 8X or
call rates less than 90 % for all bases), and 8 with low
(≤90 %) concordance with GWAS.
Racial and ethnic differences and population sub-

structure have been demonstrated to have great impact
on rare variant association analyses [46]; therefore, we
set out to homogenize our sample cohort of 3695 using
available Illumina 1M and 1M-duo genotyping array
data [17]. We performed principal component analysis
(PCA) using the “smartpca” script in EIGENSTRAT

https://earray.chem.agilent.com/earray/
https://earray.chem.agilent.com/earray/
http://snp.gs.washington.edu/SeattleSeqAnnotation137
http://snp.gs.washington.edu/SeattleSeqAnnotation137
http://genetics.bwh.harvard.edu/pph2
http://genetics.bwh.harvard.edu/pph2
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[47]. When available, we ran PCA on parents’ whole-
genome genotyping data or, when parents were not
available, on the individuals own. For those without
genotyping data, we ran PCA with the sequencing data
generated in this study. All participants who had both
parents, or themselves when parental data was unavail-
able, fall within 2 standard deviations (SD) of the mean
PC1 and PC2 values among our largest group of sam-
ples, clustering near the HapMap CEU population,
were selected for further analysis. Additionally, all indi-
viduals with sequencing PCs within 2 SD of the mean
PC1 and PC2 values of this genetically defined group
defined above were also included. This analysis left
2975 European white individuals (2071 cases and 904
controls) for further analysis.

Variant burden and association analyses
Comparison of the mean number of total, missense,
and nonsense single nucleotide variants (SNVs) between
cases and controls was done by unpaired t tests. Diffe-
rential burden analysis of the number cases versus con-
trols harboring loss-of-function variants was calculated
by the Fisher exact test. We performed differential bur-
den testing of loss-of-function genes across all genes and
then restricted this to a list of strong ASD candidate
genes using the curated SFARI gene database [48]. There
were 45 genes with a gene score from SFARI that were
included as the ASD candidate list.
We performed gene-based analyses testing association

between targeted genes and ASD using the Optimized
Sequence Kernel Association Test (SKAT-O) [49, 50]
with default weights, adjusting for the first three PCs as
covariates and correcting for gene size and linkage
disequilibrium of variants within a gene. SNVs with
differential case-control missingness p < 1.0 × 10−6 were
excluded from analyses. This test was chosen because it
is more powerful than collapsing and pooling methods
in the presence of both risk and protective variants
[50–53]. Analyses were run on several subsets of the var-
iants including all and rare (minor allele frequency
(MAF) ≤0.01) exonic, nonsynonymous, missense, pre-
dicted damaging, and LOF SNVs.

Capillary sequencing
A subset of variants was analyzed by traditional capil-
lary sequencing. Variant specific oligos were designed
using the Primer3 (v. 0.4.0) (http://fokker.wi.mit.edu/
primer3/input.htm) [54] and the UCSC genome browser
(GRCh37/hg19). Sequencing reactions were performed
with the Big Dye Terminator v3.1, sequenced on
the Applied Biosystems 3730xl DNA Analyzer (Life
Technologies, Grand Island, NY) and evaluated in the
Sequencher software v4.10.1 (Gene Codes Corporation,
Ann Arbor, MI).
Results
Sequencing output and quality control
Targeted MPS was performed to identify potential ASD risk
alleles in 2071 ASD cases by comparing to 904 non-autistic
controls in GWAS-NR prioritized regions. We generated
30.3 ± 9.7 million passing filter Illumina HiSeq 2 × 100 bp
reads per individual sample with only 8.6 ± 5.9 % duplicate
reads removed to avoid amplification artifacts. Of the
remaining reads, 96.8 ± 1.4 % aligned to the human gen-
ome and 81.2 ± 10.2 % aligned to the 29.1 Mb “near
target” region, consisting of bases covered by targeting
probes and their 200-bp flanks. This highly efficient tar-
geting, sequencing, and alignment lead to average depth
coverage of 78.1 ± 25.9 times of the near target bases and
87.6 ± 5.6 % of targeted bases covered at least 10X.

Genotype calling and variant discovery
Overall, we identified 545,916 genomic positions at
which at least one of the 2911 individuals analyzed had a
non-reference genotype call, meeting our genotype call-
ing quality criteria. Of those, 231,945 SNVs (56.2 %)
were not previously annotated in dbSNP137. Genotype
call quality and sample matching integrity was deter-
mined by comparison of SNP genotyping data available
for most samples [17, 18]. The SNV calls between tar-
geted sequencing and genotyping arrays at over 30,000
markers had an average concordance of 99.3 ± 0.01 %.

Functional annotation of variants
We focused our analyses on SNVs affecting only coding
exons of the targeted genes to best identify functional
variation. We identified 25,966 such SNVs in our cohort
including 16,330 (62.9 %) SNVs were not previously re-
ported in dbSNP134. We employed publically available
databases to annotate each variant, including PolyPhen2
damaging predictions. When multiple isoforms were iden-
tified, the most deleterious SNV was included. To allow
for comparison between cases and controls, we normal-
ized the number of variants correcting for differences in
sequence coverage and missing data. This normalization
procedure gave extremely consistent rates of variation in
cases and controls. We identified no difference between
cases and controls in the overall number of SNVs nor in
subsets of missense, predicted damaging, or nonsense and
splice site variants (Table 1).

Gene-based rare variant association
Because we did not identify a global difference in the
number of SNVs between cases and controls, we tested
the hypothesis that sets of protein-coding SNVs in genes
would be associated with ASD using gene-based rare
variant set tests with SKAT-O. We restricted our ana-
lyses to rare SNVs (MAF ≤0.01) and identified nominal
association (p ≤ 0.05) with 16, 19, and 25 genes when

http://fokker.wi.mit.edu/primer3/input.htm
http://fokker.wi.mit.edu/primer3/input.htm


Table 1 Categories of coding variation per individual

Cases Controls

Total variants 23,756 ± 836 23,749 ± 797

Coding 765 ± 62 760 ± 64

Missense 307 ± 30 305 ± 31

Damaging 85 ± 12 84 ± 13

Nonsense/splice (loss-of-function) 3 ± 1.4 2.5 ± 1.8

All coding variant passing quality control filters were annotated and
categorized by ANNOVAR into these categories
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examining exonic, nonsynonymous, and damaging
SNVs, respectively, (Table 2). However, no gene was sig-
nificant in any SKAT-O analysis after correction for
multiple gene testing (corrected p = 9.5 × 10−5).

Individual variant prioritization
Since the autism phenotype is highly variable and the
numbers of candidate genes are many, rare SNVs found
Table 2 Gene-based SKAT-O results for genes in selected categories

Exonic (524 genes) Nonsynonymous (499

Gene p values Gene

CACNA2D1 0.000478745 PLA2G6

GNPTAB 0.004651201 CDC42EP4

BICD1 0.008804534 SLC17A9

PPM1H 0.011408084 AMIGO2

DDO 0.0124426 GNPTAB

DGKG 0.015419571 OSGIN2

PKP4 0.0213883 ANKRD22

PARVA 0.022742454 PAX8

BACH2 0.026375169 ERMAP

LOC158381 0.026815002 PDK4

SLC17A9 0.032466663 SPON1

IL17RA 0.035317441 NTRK3a

QBRICK 0.035922397 DGKI

NRXN1a 0.040563396 FAM19A4

KCNH7 0.043770294 THAP2

TG 0.047652525 C18orf22

FGFR2

SPANXN3

KCNH7

Rare variants (MAF <0.01) within genes underwent gene-based association testing b
aGene is a potential ASD candidate gene in the SFARI Gene Database (https://gene.
in only one or a few individuals may be clinically rele-
vant by leading to an increased risk or causation of the
disorder. We employed a two-tier strategy to identify in-
dividual SNVs or genes contributing to autism etiology.
First, we identified genes with homozygous or com-
pound heterozygous rare (MAF ≤0.01 for each variant
allele), damaging (as predicted by SIFT or PolyPhen2)
SNVs. Among all individuals, a total of 47 genes were af-
fected by at least two rare damaging variants in the same
individual (Additional file 2). Among the genes with two
hits uniquely in cases were three candidate genes linked
to autism by a literature-curated database, DMD, SYNE1,
and TBL1X and two genes implicated in schizophrenia
(GRIK4) and intellectual disability (PQBP1). Overall,
there are significantly more ASD cases (144/2071) than
controls (26/904) carrying genes with two rare predicted
damaging SNVs (Fisher’s exact p = 0.0001).
The second strategy identified rare SNVs (MAF ≤ 0.01)

causing LOF. These alterations cause nonsense premature
with p < 0.05

genes) Damaging (504 genes)

p values Gene p values

0.00959325 ERMAP 0.00955634

0.010211946 SLC17A9 0.011358674

0.010656919 KIAA1274 0.01243212

0.016812058 ZNF519 0.017563864

0.018063006 ANKRD22 0.020850511

0.019535871 PA238 0.021527527

0.020850511 CDC42EP4 0.023737296

0.021527527 PTPRK 0.023809113

0.021748476 PDK4 0.02412783

0.024493537 OSGIN2 0.02476071

0.026942389 FMN2 0.026304563

0.027348276 SPON1 0.026942389

0.030212727 SLITRK5 0.028283659

0.030428212 DGKI 0.028626935

0.042761309 SLC16A12 0.030211966

0.044978318 FAM19A4 0.030428212

0.046420494 SLC24A2 0.031130372

0.047977446 DDO 0.032382611

0.048279279 TG 0.035323522

KIAA0914 0.036561743

ZNF396 0.038298063

THAP2 0.046033231

C18orf22 0.046801921

PDZD2 0.046866496

LASS6 0.047604531

y SKAT-O. All genes with nominal SKAT-O p values <0.05 are represented
sfari.org/autdb/)

https://gene.sfari.org/autdb/
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stops or stop losses and splice site changes. Among our
2975 individuals, we identified 464 rare LOF variants
(Additional file 3). Across all these variants, there was no
overall enrichment of LOF in ASD cases (Fisher’s exact
p = 0.325). However, when restricting the gene list to only
those that have been implicated previously in ASD, there
is a significant enrichment of loss-of-function variants in
cases with 27 cases carrying such variants compared to
only four controls (Fisher’s exact p = 0.032).

Inheritance of loss-of-function SNVs
Since de novo variations in protein-coding genes have
been recently shown to be a strong risk factor for
autism, we determined the inheritance status of the LOF
SNVs in seven ASD candidate genes and an additional
ten LOF SNVs in genes with putative neuronal function
(Table 3). We performed standard capillary sequencing
of the individual in which the SNV was identified along
with both parents and available siblings, if any. All 17
variants were validated. Of the 17 variants examined,
one, a premature stop codon in RBFOX1, was de novo
(Fig. 1), 13 were maternally inherited, and three were
paternally inherited. Two of the variants, premature stop
alterations GPR110 and DOCK1, were identified in an
individual from a family with multiple affected indi-
viduals. The variant in GPR110 did not segregate with
Table 3 Case unique loss-of-function variants selected for
Sanger validation

Position Gene Coding nucleotide Amino acid

chr1:146737632 CH1DL c.C169T p.R57X

chr2:32434592 SLC30A6 c.C625T p.R209X

chr3:154139052 GPR149 c.C1399T p.Q467X

chr4:187517886 FAT1a c.C481T p.R161X

chr5:75866423 IQGAP2 c.C322T p.R108X

chr5:108294935 FERa c.C1018T p.R340X

chr5:148407104 SH3TC2 c.G832T p.E278X

chr6:46988468 GPR110 c.C610T p.R204X

chr6:102483442 GRIK2a splice splice

chr6:116288798 FRKa c.C715T p.R239X

chr6:152690106 SYNE1a splice splice

chr10:34400099 PARD3 splice splice

chr10:129183056 DOCK1 c.G3747A p.W1249X

chr13:109859019 MYO16a c.G5478A p.W1826X

chr15:58004192 GCOM1 c.C1315T p.R439X

chr16:7637291 RBFOX1a c.C517T p.R173X

chr22:17588636 IL17RA c.C1065G p.Y355X

Rare loss-of-function variants in genes with presumed neuronal genes were
subjected to Sanger validation and familial segregation testing. Coordinates
are based on the hg19 human genome reference build
aGene is a potential ASD candidate gene in the SFARI Gene Database
(https://gene.sfari.org/autdb/)
the ASD, but the LOF SNV in DOCK1 is identified in
the affected pro-band and ASD-affected mother and not
an unaffected sibling.

Discussion
ASD has few common variants known to impact genetic
risk leading to the hypothesis that rare variants with
larger effects in candidate genes are contributing to the
phenotype. Since the objective of GWAS-NR is to iden-
tify regions of association for follow-up analysis [16], our
study set out to identify such rare variants specifically in
previously associated candidate genes. Similar approaches
have been successful at identifying the contribution of rare
variants in other complex diseases such as type II diabetes
[55], hypertriglyceridemia [56], and inflammatory bowel
disease [57, 58].
The majority of sequencing studies in ASD thus far

have been whole-exome sequencing in large trio-based
cohorts [26–32]. These efforts are designed specifically
to identify de novo variants of high effect and have iden-
tified several recurrent de novo loss-of-function changes
as strong risk factors for ASD. While the current study
was not designed for identification of de novo variants,
we undertook a two-pronged approach to identify indi-
vidual loss-of-function variants that could have major ef-
fects. Firstly, we identified a statistically significant
increase in the number of genes with at least two rare
predicted damaging alterations in the same individual in
ASD cases compared to controls (p = 0.0001). Secondly,
we found an excess of LOF mutations in ASD candidate
genes in our cases (p = 0.032). Overall, this suggests that
carrying two damaging hits or LOF in previously identified
candidate genes is a risk factor for ASD. This is similar to
previous WES studies specifically identifying two-hit and
LOF mutations as risk factors in ASD [30, 59].
Among these loss-of-functions, we identified a de

novo premature stop variation in the splice regulation
factor RBFOX1. This is an excellent candidate gene as
several genomic lesions including microdeletions [11, 60,
61] and rare missense mutations [62] have been reported
in ASD cases in RBFOX1. Additionally, its role as a splice
regulatory factor [63] was highlighted in a transcriptome
study where aberrant splicing of RBFOX1-dependent
alternative exons in the brains of ASD patients was
identified [64]. Targets of RBFOX1 splice regulation are
enriched for genes involved in neuronal excitation [65]
and cytoskeletal reorganization [64]. This study offers the
first evidence of a de novo or LOF sequence variant in
RBOFX1 present in an ASD patient.
While the presence of a premature stop or splice alter-

ing variants does not necessarily indicate a molecular
loss-of-function, the overall analysis points to genes in-
volved in several underlying physiological mechanisms
that support a role for excitatory neurotransmission and

https://gene.sfari.org/autdb/


Fig. 1 Sanger sequencing of the loss-of-function de novo variant in RBFOX1. The patient in whom the RBFOX1 premature stop variant was identified
along with parents, and three unaffected siblings were sequenced using standard Sanger capillary sequencing. The ASD patient has a C/T genotype
(N) while all other family members are C/C
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altered neurite outgrowth and guidance in ASD. In the
analysis of genes with two damaging mutations unique
to ASD cases, we identified two genes involved in the
glutamatergic signaling pathway, the metabotropic glu-
tamate receptor 3, GRM3, and glutamate receptor, iono-
tropic, kainate 4, GRIK4. Common variants in GRM3
have been shown to have association with ASD [66]
while rare CNVs in GRIK4 have been implicated [11],
and both genes have evidence for association in bipolar
disorder [67] and schizophrenia [68, 69]. IL1RAPL2 is a
gene related to ASD candidate gene IL1RAPL1, which
regulates the formation and stabilization of glutamater-
gic synapses [70], and rare mutations have been im-
plicated in ASD and neurodevelopmental phenotypes
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[71, 72]. Neuronal adhesion and guidance molecules are
also implicated. SEMA6A has not been directly impli-
cated in ASD or other neuropsychiatric disorders, but
mouse mutants demonstrate anatomical abnormalities in
limbic and cortical cellular organization [73] and axon
guidance [74]. Finally, polyglutamine-binding protein 1
(PQBP1) has been implicated as a splice factor necessary
for proper neurite outgrowth [75], and rare mutations in
PQBP1 have also been implicated in X-linked mental re-
tardation [76].
Likewise, a commonality of function can be identified

among the loss-of-function SNVs. [45]. There are 199
genes with LOF variants uniquely in cases, including 17
in genes previously linked to ASD. Among the most in-
triguing candidates are two stop inducing SNVs in the
cell polarity regulator FAT1 and two stop and one splice
SNV in the nuclear envelope protein SYNE1 which have
previously been implicated by de novo missense variants
in ASD cases [26, 29], though the variants in this study
were maternally inherited. The glutamate receptor GRIK2
has been associated with ASD and neurodevelopment sev-
eral studies [11, 66, 77, 78], and we identify a premature
stop and two splice change SNVs. We detected two stop
and one splice SNV in the well-recognized ASD candidate
gene NRXN1 [79–82].
Taking into account all variants in this study, no dif-

ferences in global burden of variation were identified
between cases and controls reflecting the findings of
whole-exome studies in which the rate of mutations is
similar in cases compared to unaffected controls or sib-
lings [26, 28, 29, 83]. Additionally, no individual coding
variants were significantly associated with ASD. As such,
we applied rare variant association testing using SKAT-O
but did not identify any gene with a statistically significant
association of rare variants. Despite having one of the lar-
gest reported sample sizes for an ASD case-control se-
quencing study, it has been suggested that even larger
sample sizes on the order of tens of thousands of cases
will be required to identify associations of rare variants
with complex disease [84]. However, investigation of the
nominally significant genes can be informative for poten-
tial roles of several genes in ASD risk.
For example, when observing genes with nominal asso-

ciation between ASD and sets of rare exonic variants, the
most significant gene is CACNA2D1 (Calcium Channel,
Voltage-Dependent, Alpha 2/Delta Subunit) (p = 0.00047).
CACNA2D1 regulates influx of calcium ions into the cell
upon membrane polarization and Mutations in a related
gene (CACNA1C) are known to cause Timothy syndrome
which includes neurological and developmental deficits
and often autism symptoms [85]. In addition, rare exonic
and nonsynonymous variants in the potassium channel
KCNH7 showed nominal association (p = 0.043). Variants
in this gene have been previously linked to bipolar
disorder [86], schizophrenia [87], and developmental delay
[88]. Rare exonic variants in the well-established ASD and
schizophrenia candidate gene NRXN1 [79–81] show nom-
inal association (p = 0.041). Such pleiotropic relationships
between variants conferring ASD risk and other neu-
ropsychiatric disorders have been documented [89, 90].
Overall, the nominally significant gene sets point toward
synaptic function as critical in risk to ASD, and an in-
crease in sample size and collaboration across multiple
datasets may increase our power to detect significant asso-
ciations with these or other potential candidate genes.
In conclusion, previous studies of the genetic causes of

ASD have implicated hundreds of potential loci with
none fully explaining the extent of genetic risk. There-
fore, it is a necessity to identify the many rare variants in
numerous genes contributing to the disorder using exist-
ing GWAS data to prioritize regions of ASD-specific
susceptibility variants and then find underlying rare risk
variants using recently developed massively parallel se-
quencing technologies. This has the distinct advantage
of reduced cost, ease of multiplexing, and specific infor-
mation content as compared to whole-exome sequen-
cing studies.

Conclusions
We have used this approach to arrive at three observa-
tions. First, our evidence is suggestive that accumulation
of rare variants in synaptic genes, including CACNAD2,
KCNH7, and NRXN1, is associated with ASD, but inde-
pendent support from future sequencing studies will be
necessary to statistically support this idea. Second, we
identified an over-representation of two damaging hit
across all genes and LOF mutations in ASD candidate
genes as a risk factor for ASD and implicate damaging
mutations in glutamate signaling receptors and neuronal
adhesion and guidance molecules. Finally, we provide
supporting evidence of de novo coding mutations and
the role of RBFOX1 dysfunction as a potential risk factor
for ASD. These observations highlight the heterogeneity
of the genetic etiology of ASD but point toward a con-
vergence of pathways and mechanisms which underlie
the complex phenotype.
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